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Abstract: Many complex systems may be represented as complex networks of ith parts or nodes 

(ni) interconnected by some kind of bonds, ties, relationships, links (Lij). For instance, Fowler et al. 

represented all case citations (Lij) in the U.S. Supreme Court as a network of nj cases citing 

and/or cited by other. These huge collections of nodes/links are impossible to remember and 

rationalize by a single person in order to assign correct links in new situations. Fortunately, 

Artificial Neural Networks (ANNs) can help us in this task. If we want use ANNs to predict links 

in complex networks, first we need to transform all the information into numerical input 

parameters to feed ANNs, second: we need to find the best ANN to predict our network. We can 

solve the first problem quantifying the structural information of the complex system (Brain, 

Ecological, Social, etc.) with universal information measures known as Shannon entropy (Sh). 

We can quantify topological (connectivity) information of both the complex networks under 

study and a set of ANNs trained using Shannon measures. Then using both sets of information 

parameters as inputs we can develop a dual QSPR model to discriminate between SANNs and 

not efficient ANN topologies. Here we used this QSPR method to develop potential HPC schedulers 

for complex systems. We studied 663072 citations to majority opinions in 43 sub-networks; each 

one with 5,000 (5K) citations to U.S. Supreme Court decisions (5KCNs). The overall accuracy of 

the ANN found was of >85% for 5KCNs; in training and validation series. 

 

Keywords: SANN Scheduler; Markov-Shannon Entropy; U.S. Supreme Court; Social Network 

Analysis. 

 

1. Introduction 

Many important systems, in center of 

attention of modern science, may be approached 

as complex networks of ith parts or nodes (ni) 

interconnected by some kind of links (Lij), 

bonds, ties, or relationships [1-7]. The diversity 

of systems susceptible to be studied by complex 

networks is very high; e.g.,: Human brain [8], 

Ecosystems [9-11], or the citations to U.S. 

Supreme Court decisions [12]. All these 

collections of nodes and links are so large that it 
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is impossible for a person to remember and 

rationalize all possible connections. We can 

solve this problem using Quantitative Structure-

Activity/Property Relationships (QSAR/QSPR) 

models [13-18]. In QSAR/QSPR modeling we 

can represent the system as a graph of 

interconnected nodes and use as inputs theoretic-

information parameters that quantify information 

about the structure of the graph. In this context, 

Shannon entropy quantifies the information 

contained in a message, usually in units such as 

bits [19-36]. The software MARCH-INSIDE 

(Markov Chains Invariants for Network 

Simulation and Design) has become a very useful 

tool for QSAR/QSPR studies [37-45]. 

In this occasion we selected the dataset of 

Fowler et al. [12], represented all case citations 

(Lij) in the U.S. Supreme Court as a network of 

nj cases citing and/or cited by other. Fowler used 

a complex network approach to quantify links in 

citations between cases and unravel the most 

relevant precedents. The work opens the door to 

the use of complex network structural parameters 

like topological indices and/or information 

measures to predict the future citation behavior 

of state courts, the U.S. Courts of Appeals, the 

U.S. Supreme Court, as well as other legal 

systems [45, 60-62].  

The number of nodes and connections in 

complex systems is very large and the problem 

of prediction of correct links may become a 

computationally expensive task for large 

collections of complex systems. Artificial Neural 

Networks (ANNs) can help us in this task. ANNs 

are powerful bio-inspired algorithms able to 

learn/infer large datasets. There many examples 

of applications of ANNs to seek QSPR-like 

models [63-66]. ANNs can mange, for example, 

to learn to discriminate the correct collections of 

nodes (nj) and links present in complex systems 

(Lij) from other connectivity patterns not correct 

and/or distributed at random. We have at least 

two major problems if we want use ANNs to 

predict links in bio-systems and complex other 

networks. First, we need to transform all the 

information into numerical input parameters to 

feed ANNs. Next, we have to train many ANNs 

to detect which topology is better learning the 

structure of the system under study.  

In this work, we introduce a new type of 

algorithm to solve this problem. The idea is 

simple: if ANNs are networks with nodes 

(neurons) and links (functions) we should treat 

them as such. In so doing, we can quantify 

topological (connectivity) information of both 

the complex networks under study and a set of 

ANNs trained using Shannon measures. Using 

both sets of information parameters as inputs we 

can develop a dual Quantitative Structure-

Property Relationship (QSPR) model to 

discriminate between SANNs and not efficient 

ANN topologies. Here we used this QSPR 

method to develop potential HPC scheduler for 

complex systems. We studied 663072 pairs in 43 

sub-networks; each one with 5,000 (5K) citations 

to U.S. Supreme Court decisions (5KCNs). The 

overall accuracy of the SANN-HPC schedulers 

found was of >81% for 5KCNs; in training and 

validation series (see Figure 1). This report of 

QSPR models potentially useful as task 

schedulers for HPC or Cloud Computing of 

ANNs with the subsequent can help to safe time 

and computational resources in the prediction of 

Complex Networks. 

Linear Discriminant Analysis (LDA) models: 

Once the values of the Markov-Shannon 

entropies were obtained, we carried out a Linear 

Discriminant Analysis (LDA) by means of the 

STATISTICA software [76]. Let be qS(Lij) the 

output variable of a HPC schedule model used to 

score the ability of a given ANNq to predict 

correctly the link Lij between two nodes i-th and 

j-th (Lij = 1). We can use LDA to seek a linear 

equation with coefficients aik, bjk, cqk, dijqk, 
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and e0. These are the coefficients of the Shannon 

entropies for the first node (Shik), for the second 

node (Shjk), and for the ANN graph 

(Shk(ANNq)), used as input for the LDA model. 

The k subindex indicates that this Shk value 

codify information for all nodes placed at least at 

topological distance d = k from the node of 

reference. We can use different statistical 

parameters to evaluate the statistical significance 

and validate the goodness-of-fit of LDA 

equation: n = number of cases, χ2 = Chi-square, 

p = the error level, as well as the Accuracy, 

Specificity, and Sensitivity of both train and 

external validation series [77]. We can write the 

LDA equation with the parameters mentioned 

above in the following form, see also Figure 1. 

2. Results and Discussion 

Social Network Analysis (SNA) emerged in 

1930 to become one of the more powerful tools 

in socials sciences [80]. With the rise of network 

search, commerce, consume, and socialization 

companies like Google, Facebook, Twitter, 

LinkedIn, Amazon, and others, SNA have 

become a very important tool for the analysis of 

the high amount of information of users 

interactions in the web [refs]. However, the 

application of these methods in legal studies is 

still at the beginning [81, 82]. Network tools may 

illustrate the interrelation between the different 

law types/judicial cases and help to understand 

law/judicial cases effect in the legal system and 

its effectiveness to regulate aspects of necessity 

in society or not. We have applied the present 

methodology the design new schedulers for HPC 

of ANN models useful to predict one important 

legal network. The example selected was the 

USSCC network and the best model found was: 

 

Where Shk(Lti) and θk(Lti+1) are the entropy 

parameters that quantify information about the 

Legal norms (Laws) of type L introduced in the 

Spanish legal system at time ti and ti+1 with 

respect to the previous or successive kth norms 

approved. The model behaves like a time series 

embedded within a complex network. This is 

because it predicts the recurrence of the Spanish 

law system to a financial norm of class c when 

socio-economical conditions change at time ti+1 

given that have been used a known class of norm 

in the past at time ti. The model correctly re-

constructed the network of the historic record for 

the Spanish financial system with high Accuracy, 

Specificity, and Sensitivity (Table 1).  

 

Table 1. Results of models for USSC network. 

Model Training Series Model Cross-Validation Series 

Param.a % Class Lij = 0 Lij = 1 Param.a % Class Lij = 0 Lij = 1 

Sp 92.8 Lij = 0 219919 17161 Sp 92.8 Lij = 0 74552 5780 

Sn 73.8 Lij = 1 41449 116831 Sn 73.0 Lij = 1 13817 37391 

Ac 85.2 Total 

  

Ac 85.1 Total 

  Rows: Observed classifications; Columns: Predicted classifications; Cij = Calculation with high priority; NCij = No Cij. 
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Figure 1. General workflow used in this work to develop new ANN for USSC network. 

 

3. Materials and Methods 

Datasets: U.S. Supreme Court (USSC) 

Network. We used a complex network 

constructed by Fowler et al. [75]. The authors 

included 26,681 majority opinions written by the 

U.S. Supreme Court. The dataset contains all 

cases that cite this U.S. Supreme Court decisions 

from 1791 to 2005. In this network each case is 

represented by a node. The links between two 

nodes Ai and Bj (arcs) express that the case jth 

cites the ith case previous to it (precedent). In 

order to both make more tractable the dataset for 

computation of Shk(Ai) and Shk(Bj) values and 

focused on specific intervals of time we split the 

data in 43 sub-networks. Each one represent one 

slot of 5000 (5K) citing cases, 5K-Citations 

Network (5KCNs) for > 22,000 cases of the U.S. 

Supreme court. 

Computational Methods: Markov-Shannon 

Entropy Centralities for nodes. 

We construct the classical Markov matrix 

(1Π) for each network as follows. First, we 

download from public resources the connectivity 

matrix L or obtain the data about the links 

between the nodes to assemble L (n by n matrix, 

where n is the number of vertices). Next, the 

Markov matrix Π is built. It contains the vertices 

probability (pij) based on L. The probability 

matrix is raised to the power k, resulting (1Π)k, 

and multiplied by the vector of the initial 

probabilities (0pj). The resulting vectors contain 

the absolute probabilities to reach the nodes 

moving throughout a walk of length k from node 

ni (kpj) for each k and are the base for the 

entropy centrality (Shk) calculation: 

  

4. Conclusions 
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In this work we confirm that it is possible to 

combine Markov Chains and Shannon Entropy in 

order to calculate higher order entropy 

parameters. We also show that these parameters 

can be used to quantify information about local 

and global node-node connections in different 

types of complex networks. For it, we have used 

MI-NODES, a new tool for the study of complex 

networks which is an upgrade of the software 

MARCH-INSIDE, classically used to study 

drugs and proteins. 
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