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Representations of a site disordered solid 

Species A           and B         share the same type of site in the crystal 

PBC 

Structure with 

average ions  

PBC 

PBC 

PBC 

- Local structure wrong 

- Solution energies  

usually wrong too 

Supercell with random or  

special quasi-random 

distribution of ions 

- Local structure ok 

- Large cell required 

- Temperature independent 

Configurational ensemble 

- Local structure ok 

- Computationally cheaper 

  (and parallelisable) 

- Temperature dependence via  

   statistical mechanics 



Classification of methodologies for modelling site-disorder 

 

 

 

Geom. 

relax. 

 

 

 

Elect. 

relax. 

Average-ion Supercell Ensemble 

Energy as a 

function of site 

occupancies 

 

No 

 

No 

-  - Ising-like models, 

Cluster Variation 

Method (CVM) 

Energy from 

classical 

interatomic 

potentials 

 

Yes 

 

No 

Mean-field 

approach in GULP 

Random or 

arbitrary 

distributions 

 

Energy from 

QM 

calculations 

 

 

Yes 

 

 

Yes 

Virtual Crystal 

Approximation 

(VCA) 

Random or 

arbitrary 

distributions,  

Special quasi-

random structures 

(SQS) 

Disorder representations  

R. Grau-Crespo and U. V. Waghmare.“Simulation of crystals with chemical disorder at lattice sites” 

In: Molecular Modeling for the Design of Novel Performance Chemicals and Materials. Ed. B. Rai. CRC Press Inc. (2012). 



Why IP or QM in ensemble calculations? 

- Some interactions are difficult to parameterise in cluster expansion 

models (e.g. long-range interactions in ionic solids, strong geometric 

relaxations, changes in electronic configurations, etc.)  

 

- IP and QM methods provide not just energies but also other properties 

for each configuration (e.g. local geometries and cell parameters, 

electronic structure, spectra). Configurational averages can then be 

obtained.  

 

- They allow to directly evaluate vibrational properties of the disordered 

solid.  

 

- They also allow to extend the simulations to solid surfaces, which is 

non-trivial with simpler interaction models.  

 

 

 

 



Statistics in the configurational space:  

basic formulation 
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The main problem is the high number of configurations 

   Example: 3 substitutions in 12 sites 

   Number of configurations: 

12!
    

(12 -3)! 3!
220



Dealing with the configurational barrier 

Random sampling 
Importance sampling / 

Monte Carlo 

(sample is biased; 

statistics is different). 

Symmetry-adapted  

ensembles 

(reduces size of  

configurational space  

by ~two orders of  

magnitude) 



How to take advantage of the crystal symmetry?  

- Only inequivalent configurations have to be calculated, if their 

degeneracies Ωm are known a priori. Then: 

 

 

 

 

- Two configurations are equivalent if they are related by an isometric 

transformation. 

 

 

- All possible isometric transformations are contained in the symmetry 

group of the parent structure (including supercell translations). 

  exp(- / ) m
mmP E kT

Z






Taking advantage of the supercell symmetry 



 sod (site – occupancy disorder) package 
 

sod_comb 

Crystal structure 

 

Site concentrations 

of different species 

  

All  different  

site-occupancy configurations  

+ 

Input files for VASP calculations 

(also GULP and other programs) 

 

 

Grau-Crespo et. al. Journal of Physics - Condensed Matter 19 (2007) 256201 

sod_stat Statistical analysis of results 

 

Average properties  

as functions of temperature and 

dopant concentration. 

VASP, 

GULP, 

etc 

sod 



Bulk and surface of  

ceria-zirconia solid solutions 
 

(with U. Waghmare and N. H de Leeuw) 

 

Ce1-xZrxO2 has replaced pure ceria in three-way car exhaust catalysts 

  

What happens to the cation distribution at the  high temperatures (up to 

1373 K) of close coupled converters? 



SOD+VASP (DFT) calculations 

Calorimetric experiments:  

Lee, Navrotsky et al. J. Mater. Res. (2008) 

Enthalpy of mixing: 
The formation of the solid solution is 

strongly endothermic 

Solid solutions used in applications are metastable 

(Maximum stable Zr content at 1373 K is ~2 mol%) 

 

Free energy of mixing: 



Ceria – zirconia surface calculations (SOD + VASP) 

 

Calculated Zr content at 

different layers as a function of 

composition and temperature 

R Grau-Crespo, NH de Leeuw, S Hamad, UV Waghmare, 

Proc. Royal Soc. A  467, 1925-1938 (2011) 
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Co3Sn2-xInxS2  solid solutions 

in collaboration with the group of Prof. Anthony V. Powell (Reading)  

•Shandites are a family of 

structurally-related materials of 

general formula A3M2X2 (A = Ni, 

Co, Rh, Pd; M = Pb, In, Sn, Tl; X = 

S, Se). 

 

•Low thermal conductivity due to 

their sudo 2-dimensional layered 

structure 

 

•In doping of Sn in Co3Sn2-xInxS2  

was performed changing the 

electron count by two across the 

composition range 
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Chem. Mater. 2015, 27 (11), 3946–3956. 

Comparison of lattice parameters determined by powder 

neutron diffraction compared with the results of DFT 

calculations. 

Co3Sn2-xInxS2  solid solutions 



Hydrogen vacancies in MgH2   

 

α phase:  
Metallic Mg with 

interstitial H 

β phase:  
Ionic MgH2 

Very slow H 

diffusion in β phase! 

(With Umesh Waghmare, Kyle Smith and Tim Fisher)  



MgH2 rutile-like structure 

Chains of MgH6 octahedra sharing 

edges along the c axis. 

 

 
2x2x2 supercell employed in 

calculations: 

 

16  Mg  and  32-n  H atoms, 

 

n  is the number of vacancies 

 in the supercell  

 

DFT (VASP) calculations – there are F centres 



Electronic structure of H vacancies in MgH2 



Configuration energies 1 2 

3 

Vacancy species:           

VFE(eV) 

 

1       mono-vacancy               1.41 

1+2   di-vacancy of type I      1.04 

2+3   di-vacancy of type II     1.13 

1+2 +3  tri-vacancy                1.07 
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Probability of the mth configuration with n vacancies is: 
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Equilibrium concentration of vacancies as a function of pH2 and T: 

Introducing the grand-canonical formulation:  



   Theoretical pressure – composition isotherms in MgH2-x 

• Very low concentration of vacancies, which explains slow diffusion kinetics  

• More mono-vacancies than di-vacancies! 

 Phys. Rev. B 80 174117 (2009) 



An alternative  mechanism  

for vacancy formation: doping with monovalent ions 
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Vacancies trapped by dopants 
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Diffusion cannot be improved with Li doping beyond ~1%  !!!! 

Concentration of free vacancies vs dopant molar fraction 

K. Smith, T. S. Fisher, U. V. Waghmare and R. Grau-Crespo, Phys. Rev. B  82, 134109 (2010) 



Impurities in aragonite: 

Measuring climate change from coral fossils 

 
(in collaboration with Nora de Leeuw’s group) 

Adapted from Gagan et al. 

Quaternary Science Reviews  

19 (2000) 45-64 

• Sr content of coral fossils correlates with sea 

surface temperature (SST) during 

biomineralization (paleothermometer) 

 

• Doubts about thermodynamic stability of this  

Sr content in coral skeleton material  

(aragonite CaCO3) 

 

• formation of strontianite SrCO3? 



Configurational spectrum for 

Sr0.125Ca0.875CO3, 
 

Highly but not completely disordered. 

- Classical interatomic 

potential calculations using 

GULP 

 

- Vibrational effects included in 

the thermodynamic analysis. 

 

- Full range of compositions in 

the solid solution. 



Free energies of mixing 



Mg  

impurity 

Chem. Eur J. (2012) 

 Mg in aragonite CaCO3 

 The grand-canonical approach in equilibrium with aqueous solution 

• Mg in corals offers more 

resolution in 

paleothermometry correlations 

 

• But trends less reproducible – 

Mg not in aragonite bulk 

 

• In surface? 



Equilibrium Mg content in aragonite depends on particle size and 

morphology (and of Mg content in solution - inset) 

Chem. Eur J. (2012) 



Other applications of the SOD methodology: 

 

https://sites.google.com/site/rgrauc/sod-program 

 

 

Including materials for: 

 

- Batteries (Saiful Islam’s group in Bath) 

- Solar cells (Aron Walsh’s group in Bath) 

- Thermoelectric (Sands’s group in Purdue, USA) 

- Superconductivity (Illas’s group in Barcelona) 

- Biomaterials (Nora de Leeuw’s group) 

- And more minerals (Angeles Fernandez, Oviedo) 

https://sites.google.com/site/rgrauc/sod-program
https://sites.google.com/site/rgrauc/sod-program
https://sites.google.com/site/rgrauc/sod-program
https://sites.google.com/site/rgrauc/sod-program
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