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Abstract: The antiviral QSAR models today have an important limitation. Only they predict the 

biological activity of drugs against only one viral species. This is determined due the fact that most 

of the current reported molecular descriptors encode only information about the molecular 

structure. As a result, predicting the probability with which a drug is active against different viral 

species with a single unifying model is a goal of major importance. In this we use the Markov 

Chain theory to calculate new multi-target entropy to fit a QSAR model that predict by the first 

time a ms-QSAR model for 900 drugs tested in the literature against 40 viral species and other 207 

drugs no tested in the literature using entropy QSAR. We used Linear Discriminant Analysis 

(LDA) to classify drugs into two classes as active or non-active against the different tested viral 

species whose data we processed. The model correctly classifies 31 188 out of 31 213 non-active 

compounds (99.92%) and 432 out of 434 active compounds (99.54%). Overall training 

predictability was 98.56%. Validation of the model was carried out by means of external predicting 

series, the model classifying, thus, 15 588 out of 15 606 non-active compounds and 213 out of 217 

active compounds. Overall validation predictability was 98.54%.  The present work report the first 

attempts to calculate within a unify framework probabilities of antiviral drugs against different 

virus species based on entropy analysis. 
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1. Introduction 

Examples of diseases caused by viruses 

include the common cold (produced by any one of 

a variety of related viruses), AIDS (caused by 

HIV) and cold sores (caused by herpes simplex); 

which produced some of the major health 

problems in the last 30 years. Other relationships 

are being studied such as the connection of 

Human Herpesvirus 6 (HHV6), one of the eight 
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known members of the human herpes virus 

family, with organic neurological diseases such as 

multiple sclerosis and chronic fatigue syndrome. 

Recently, it has been shown that cervical cancer is 

caused, at least partially, by papillomavirus, 

representing the first significant evidence in 

humans for a link between cancer and an infective 

agent. The relative ability of viruses to cause 

disease is described in terms of virulence. 

Consequently, there is an increasing interest on 

the development of rational approaches for 

discovery of antifungal drugs. In this sense, a very 

important role may be played by computer-added 

drug discovery techniques based on Quantitative-

Structure-Activity-Relationship (QSAR) models 

(1). Unfortunately, almost QSAR studies, 

including those for antiviral activity and others, 

use limited databases of structurally parent 

compounds acting against one single fungus 

species (2). One important step in the evolution of 

this field was the introduction of QSAR models 

for heterogeneous series of antimicrobial 

compounds; see for instance the works of Cronin, 

de Julián-Ortiz, Galvéz, Gárcía-Domenech, 

Gosalbez, Marrero-Ponce, Torrens, et al. and 

others (3-15). As a result, researchers may predict 

very heterogeneous series of compounds but often 

need to use/develop as many QSAR equations as 

microbial species are necessary to be predicted. In 

any case, if you aim to predict activity against 

different targets you still need to use one different 

QSAR model for each target.  

An interesting alternative, is the prediction of 

structurally diverse series of antimicrobial 

compounds (antiviral in this case) against 

different targets (mechanisms) using complicated 

non-linear Artificial Neural Networks with multi-

class prediction, e.g. the work of Vilar et al. (16). 

We can understand strategies developed in this 

sense as Multi-Objective Optimization (MOOP) 

techniques; in this case we pretend to optimize the 

activity of antiviral drugs against many different 

objectives or targets (viral species). A very useful 

strategy related to the MOOP problem use 

Derringer's desirability function desirability 

function and many QSAR models for different 

objectives (17). In this sense, it is of major 

importance the development of unified but simple 

linear equations explaining the antimicrobial 

activity, in the present work antiviral activity, of 

structurally-heterogeneous series of compounds 

active against as many targets (viral species) as 

possible. We call this class of QSAR problem the 

multi-target QSAR (mt-QSAR) (18, 19).  

 

There are near to 2000 chemical molecular 

descriptors that may be in principle generalized 

and used to solve the mt-QSAR problem. Many of 

these indices are known as Topological Indices 

(TIs) or simply invariants of a molecular graph G. 

We can rationalize G as a draw composed of 

vertices (atoms) weighted with physicochemical 

properties (mass, polarity, electro negativity, or 

charge) and edges (chemical bonds) (20). In any 

case, many of these indices have not been 

extended yet to encode additional information to 

chemical structure. One alternative to mt-QSAR 

is the substitution of classic atomic weights by 

target specific weights. For instance, we 

introduced and/or reviewed TIs that use atomic 

weights for the propensity of the atom to interact 

with different microbial targets (21) or undergoes 

partition in a biphasic systems or distribution to 

biological tissues (22-24). The method, called 

MARCH-INSIDE approach, Markovian 

Chemicals In Silico Design, calculates TIs using 

Markov Chain theory. In fact, MARCH-INSIDE 

define a Markov matrix to derive matrix 

invariants such as stochastic spectral moments, 

mean values, absolute probabilities, or entropy 

measures, for the study of molecular properties. 

Applications to macromolecules have extended to 

RNA, proteins, and blood proteome (25-30). In 

particular, one of the classes of MARCH-INSIDE 
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descriptors is defined in terms of entropy 

measures; which have demonstrated flexibility in 

many bioorganic and medicinal chemistry 

problems such as: estimation of anticoccidial 

activity, modelling the interaction between drugs 

and HIV-packaging-region RNA, and predicting 

proteins and virus activity (24, 31-33). We give 

high importance to entropy measures due to it 

have been largely demonstrate as an excellent 

function to codify information in molecular 

systems, see for instance the important works of 

Graham (34-39). However, have not been studied 

the proficiency of entropy indices (of MARCH-

INSIDE type or not) to solve the mt-QSAR 

problems in antiviral compounds.  

The present study develops the first mt-QSAR 

model based on entropy indices to predict 

antiviral activity of drugs against different viral 

species. The model fits one of the largest datasets 

used up-to-date in QSAR studies, number of 

entries 47 000+ cases; which is the result of 

forming different (antiviral compounds/viral 

target) pairs.   

 

2. Results and Discussion 

 

One of the main advantages of the present 

stochastic approach is the possibility of deriving 

average thermodynamic parameters depending on 

the probability of the states of the MM. The 

generalized parameters fit on more clearly 

physicochemical sense with respect to our 

previous ones (24, 41, 42). In specific, this work 

introduces by the first time a linear mt-QSAR 

equation model useful for prediction and MOOP 

of the antiviral activity of drugs against different 

viral target species or objectives. The best model 

found was: 
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In the model the coefficient λ is the Wilk’s 

statistics, statistic for the overall discrimination, χ2 

is the Chi-square, and p the error level. In this 

equation, kθs where calculated for the totality (T) 

of the atoms in the molecule or for specific 

collections of atoms. These collections are atoms 

with a common characteristic as for instance are: 

heteroatom (Het), unsaturated Carbon atoms 

(Cunst), saturated Carbon atoms (Csat) and 

hydrogen bound to heteroatom (H-Het. The model 

correctly classifies 31 188 out of 31 213 non-

active compounds (99.92%) and 432 out of 434 

active compounds (99.54%). Overall training 

predictability was 98.56%. Validation of the 

model was carried out by means of external 

predicting series, the model classifying, thus, 15 

588 out of 15 606 non-active compounds and 213 

out of 217 active compounds. Overall validation 

predictability was 98.54%.  

The more interesting fact is that kθs have the 

skill of discerning the active/no-active 

classification of compounds among a large 

number of viral species. This property is related to 

the definition of the kθs using species-specific 

atomic weights (see supplementary material file 

for method). It allows us to model by the first time 

a very heterogeneous a diverse data with more 

than 47 470 cases (one of the largest in QSAR). 

Another interesting characteristic of the model is 

that the kθs used as molecular descriptors depend 

both on the molecular structure of the drug and the 

viral species against which the drug must act. The 

codification of the molecular structure is basically 

due to the use of the adjacent factor αij to encode 

atom-atom bonding, molecular connectivity. The 

other aspect that allows encoding molecular 

structural changes is that the entropy kθs are atom-

class specific. This property is related to the 

definition of the kθs. For example, one change in 

the molecular structure of, e.g. S by O, necessarily 

implies a change in the moments of interaction.  

Moreover, the most interesting fact is that kµs are 
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the molecular descriptors reported for 

antimicrobial mt-QSAR studies able to 

distinguish among a large number of viral species. 

The present work is the first reported mt-QSAR 

model using entropy kθs as a molecular descriptor 

that allow one predicting antiviral activity of any 

organic compound against a very large diversity 

of viral pathogens.  

 

3. Materials and Methods 

 

3.1. Markov entropy (θk) for drug-target k-th 

step-by-step interaction 

One can consider a hypothetical situation in 

which a drug molecule is free in the space at an 

arbitrary initial time (t0). It is then interesting to 

develop a simple stochastic model for a step-by-

step interaction between the atoms of a drug 

molecule and a molecular receptor in the time of 

desencadenation of the pharmacological effect. 

For the sake of simplicity, we are going to 

consider from now on a general structure less 

receptor. Understanding as structure-less 

molecular receptor a model of receptor which 

chemical structure and position it is not taken into 

consideration. Specifically, the molecular 

descriptors used in the present work are called 

stochastic entropies θk, which are entropies 

describing th connectivity and the distribution of 

electrons for each atom in the molecule (40). The 

initial entropy of interaction a j-th atom of the 

drug with the target 0θj(s) is considered as a state 

function so a reversible process of interaction may 

be came apart on several elemental interactions 

between the j-th atom and the receptor.  The 0 

indicates that we refer to the initial interaction, 

and the argument (s) indicates that this energy 

depends on the specific viral species. Afterwards, 

interaction continues and we have to define the 

interaction probability kθij(s) between the j-th 

atom and the receptor for specific viral specie (s) 

given that i-th atom has been interacted at 

previous time tk. In particular, immediately after 

of the first interaction (t0 = 0) takes place an 

interaction 1pij(s) at time t1 = 1 and so on. So, one 

can suppose that, atoms begin its interaction whit 

the structure-less molecular receptor binding to 

this receptor in discrete intervals of time tk. 

However, there several alternative ways in which 

such step-by-step binding process may occur (24, 

41, 42). 

The entropy 0θj(s) will be considered here as a 

function of the absolute temperature of the system 

and the equilibrium local constant of interaction 

between the j-th atom and the receptor 0γj(s) for a 

give microbial species. Additionally, the energy 
1θij(s) can be defined by analogy as γij(s) (24, 41, 

43): 

           1log1log 1100 sTRssTRs ijijjj  

 

The present approach to antimicrobial-species-

specific-drug-receptor interaction has two main 

drawbacks. The first is the difficulty on the 

definition of the constants. In this work, we solve 

the first question estimating 0γj(s) as the rate of 

occurrence nj(s) of the j-th atom on active 

molecules against a given specie with respect to 

the number of atoms of the j-th class in the 

molecules tested against the same specie nt(s). 

With respect to 1γij(s) we must taking into 

consideration that once the j-th atom have 

interacted the preferred candidates for the next 

interaction are such i-th atoms bound to j by a 

chemical bond. Both constants can be then written 

down as (24, 41, 43):  
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Where, αij are the elements of the atom 

adjacency matrix, nj(s), nt(s), 0θj(s), and 1θij(s) 

have been defined in the paragraph above, r is the 

universal gases constant, and t the absolute 

temperature. The number 1 is added to avoid scale 

and logarithmic function ś definition problems. 

The second problem relates to the description of 
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the interaction process at higher times tk > t1. 

Therefore, mm theory enables a simple 

calculation of the probabilities with which the 

drug-receptor interaction takes place in the time 

until the studied effect is achieved. In this work 

we are going to focus on drugs-microbial structure 

less target interaction. As depicted in figure 1, this 

model deals with the calculation of the 

probabilities (kpij) with which any arbitrary 

molecular atom j-th bind to the structure less 

molecular receptor given that other atom i-th has 

been bound before; along discrete time periods tk 

(k = 1, 2, 3, …); (k = 1 in grey), (k = 2 in blue) 

and (k = 3 in red) throughout the chemical 

bonding system. The procedure described here 

considers as states of the mm the atoms of the 

molecule. The method arranges all the 0θj(s) 

values in a vector θ (s) and all the 1θij(s) entropies 

of interaction as a squared table of n x n 

dimension. After normalization of both the vector 

and the matrix we can built up the corresponding 

absolute initial probability vector φ(s) and the 

stochastic matrix 1(s), which has the elements 
0pj(s) and 1pij(s) respectively. The elements 0pj(s) 

of the above mentioned vector φ(s) constitutes the 

absolute probabilities with which the j-th atom 

interact with the molecular target or receptor in 

the species s at the initial time with respect to any 

atom in the molecule (24, 41, 43):  
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Where, m represents all the atoms in the 

molecule including the j-th, na is the rate of 

occurrence of any atom a including the j-th with 

value nj. On the other hand, the matrix is called 

the 1-step drug-target interaction stochastic 

matrix. 1(s) is built too as a squared table of 

order n, where n represents the number of atoms 

in the molecule. The elements 1pij(s) of the 1-step 

drug-target interaction stochastic matrix are the 

binding probabilities with which a j-th atom bind 

to a structure less molecular receptor given that 

other i-th atoms have been interacted before at 

time t1 = 1 (considering t0 = 0) (18, 24, 41, 43):  
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By using, φ(s), 1(s) and chapman-

kolgomorov equations one can describe the 

further evolution of the system.10-17 summing up 

all the atomic free energies of interaction 0θj(s) 

pre-multiplied by the absolute probabilities of 

drug-target interaction apk(j,s) one can derive the 

average changes in entropies kθs of the gradual 

interaction between the drug and the receptor at a 

specific time k in a given microbial species (s) 

(24):  
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Such a model is stochastic per se (probabilistic 

step-by-step atom-receptor interaction in time) 

but also considers molecular connectivity (the 

step-by-step atom union in space throughout the 

chemical bonding system).  

 

3.2. Statistical analysis 

As a continuation of the previous sections, we 

can attempt to develop a simple linear QSAR 

using the MARCH-INSIDE methodology, as 

defined previously, with the general formula: 
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Here, kθs act as the microbial species specific 

molecule-target interaction descriptors. The 

calculation of these indices has been explained in 

supplementary material by space reasons. We 

selected Linear Discriminant Analysis (LDA) to 

fit the classification functions. The model deals 

with the classification of a set of compounds as 

active or not against different microbial 

species(43). A dummy variable (Actv) was used 

to codify the antimicrobial activity. This variable 
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indicates either the presence (Actv = 1) or absence 

(Actv = –1) of antimicrobial activity of the drug 

against the specific species. In equation (1), ak 

represents the coefficients of the classification 

function and b0 the independent term, determined 

by the least square method as implemented in the 

LDA module of the STATISTICA 6.0 software 

package(44). Forward stepwise was fixed as the 

strategy for variable selection(43). The quality of 

LDA models was determined by examining 

Wilk’s U statistic, Fisher ratio (F), and the p-level 

(p). We also inspected the percentage of good 

classification and the ratios between the cases and 

variables in the equation and variables to be 

explored in order to avoid over-fitting or chance 

correlation. Validation of the model was 

corroborated by re-substitution of cases in four 

predicting series (43, 44). 

3.3. Data set 

The data set was formed by a set of marketed 

and/or very recently reported antiviral drugs 

which low reported MIC50 < 10 μM against 

different virus. The data set was conformed to 

more of 1100 different drugs experimentally 

tested against some species of a list of 40 virus. 

Not all drugs were tested in the literature against 

all listed species so we were able to collect 47 470 

cases (drug/species pairs) instead of 1100 x 40 

cases.  

4. Conclusions 

Entropy based mt-QSAR equation is able to 

predict the biological activity of antiviral drugs in 

more general situations than the traditional QSAR 

models; which the major limitation is predict the 

biological activity of drugs against only one viral 

species. The present model with a very large data 

set improves significantly the previous QSAR 

models and may help to perform MOOP of drug 

activity against different viral species. This mt-

QSAR methodology improves models using 

entropy as a molecular descriptor that allow 

predicting antiviral activity of any organic 

compound against a very large diversity of viral 

pathogens. 
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