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Abstract: Virtual methodologies have become essential components of the drug discovery 

pipeline. Specifically, structure-based drug design methodologies exploit the 3D structure of 

molecular targets to discover new drug candidates through molecular docking. Recently, dual 

target ligands of the Adenosine A2A Receptor and Monoamine Oxidase B enzyme have been 

proposed as effective therapies for the treatment of Parkinson’s disease. To the best of our 

knowledge, no theoretical study has been devoted to developing structure-based virtual screening 

methodologies for the discovery of dual A2AAR antagonists and MAO-B inhibitors. In this 

communication we propose a structure-based methodology for the discovery this type of 

molecules 
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1. Introduction 

During the last decades, Virtual Screening 

(VS) methodologies have emerged as efficient 

alternatives to the expensive, in terms of time 

and money, High Throughput Screening (HTS) 

approaches for the discovery of new drug 

candidates [1]. In terms of efficiency, the hit 

rates obtained when VS tools are employed to 

filter large databases of chemical compounds are 

considerably higher than those obtained with 

HTS techniques [2]. Literature reports where VS 

experiments conducted to the identification of hit 

molecules in a wide range of application can be 

found elsewhere [3,4] 

VS techniques can be divided into two main 

categories: Structure-Based VS (SBVS) and 

Ligand-Based VS (LBVS) [5]. The first one 

includes all the modeling approaches such as 

Molecular Docking and Molecular Dynamics 

that depend on the structure of a molecular 

receptor. This kind of approach uses the three-

dimensional structure of the receptor to study its 

interactions with a set of putative ligands. 

Depending on the amount of ligands to study and 

the available computational resources a more or 

less detailed representation of the receptor-

ligands interactions is chosen to estimate the 

stability of the receptor-ligand complexes. The 

computed scores serve then to order the 

investigated compounds from higher to lower 

probabilities of binding to the receptor [6]. 

One of the factors that negatively affect the 

performance of Molecular Docking SBVS 

studies is the accuracy of the scoring functions. 

Given that no scoring function can capture all the 

information relevant for the receptor-ligand 

binding process, the fusion of different scoring 

functions has been proposed as an alternative to 

improve the performance of SBVS methods [7]. 

These applications range from general ones 

intended for obtaining the best consensus 

strategy for any SBVS problem [8,9] to others 

proposed for specific researches [10,11]. In all 

these reports the proposed ensemble (fusion) 

methods outperform the VS performance 

obtained with a single scoring fusion. 

In addition, usually SBVS methodologies are 

evaluated employing only a small set of decoy 

molecules. In the case of the standard DUD-E 

database only 50 decoy molecules can be 

selected per ligand [12]. This ligands/decoys 

proportion is far from what is observed in a real 

screening scenario where the ratio of active 

molecules is ranges from 0.01 to 0.14% [13]. To 

address this situation we have previously 

proposed a home-made algorithm for the 

generation of larger decoys sets resembling the 

ligands/decoys ratio of a real screening campaign 

[14]. 

On the other side, Parkinson Disease (PD) 

causes chronic disability and it is the second 

commonest degenerative condition of the 

nervous system. The standard treatment for PD is 

levodopa, which helps to increase the dopamine 

levels in the brain[15]. However there is a need 

of finding alternative therapies since levodopa 

has many side effects and can become ineffective 

over time. To this end, multicomponent therapies 

(combination of different drugs) have been used. 

However the discovery of new multi-target drugs 

(a single molecule that acts on multiple targets) 

is attracting more and more attention[16]. Multi-

target drugs, compared with the use of 

combinations of different drugs, have more 

predictable pharmacokinetic and 

pharmacodynamic relationships as a 
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consequence of the administration of a single 

drug [17]. 

Antagonists of A2A adenosine receptors 

(A2AAR) with monoamine oxidase B (MAO-B) 

inhibitory activity are a class of promising dual-

target drugs for PD [18]. Thus, there is a need for 

developing novel and diverse drugs, antagonists 

of A2AAR with MAO-B inhibitory activity for 

PD. 

In this report we propose a structure-based 

methodology, which is extensively validated, for 

the discovery this type of molecules. The 

proposed methodology involves the molecular 

docking to both A2AAR and MAO-B of a set of 

25744 molecules containing 16 known dual 

target ligands and decoy molecules. The obtained 

docking poses are rescored using six different 

scoring functions for the two molecular targets. 

Then we investigate several aggregation schemes 

with the objective of maximizing the enrichment 

of known ligands at the beginning of the ranked 

list they produce. Finally, we show that the 

developed methodology provides high values of 

enrichment of known ligands, which outperform 

that of the individual scoring functions. At the 

same time, the obtained ensemble can be 

translated in a sequence of steps that should be 

followed to maximize the enrichment of dual 

target dual A2AAR antagonists and MAO-B 

inhibitors. 

. 

.

2. Results and Discussion 

The receptors, ligands and decoys were 

prepared for molecular docking calculations as 

described in the Materials and Methods section. 

The validation dataset consisting of the 

combination of the 16 known dual MAO-B 

inhibitors- A2AAR Antagonists and decoy 

molecules was docked to both receptor structures 

following the protocol described in the Materials 

and Methods.  

In all cases analyzed from here on, the best 

molecular docking protocol was selected as the 

scoring scheme providing the highest value of 

BEDROC among those achieving the maximum 

EF at three different selection sizes (1, 5 and 10 

percent of screened data). We separately 

analyzed the results obtained for the raw and 

weighted by number of heavy atoms scores. 

Scoring schemes were produced by fusing the 

ranks derived from the scoring functions using 

either arithmetic or geometrical mean as 

described in the Materials and Methods section. 

Different Fusion Schemes (FS) were assayed 

in this investigation and they can be classified 

into two groups. The first group consisted in 

fusing the scoring functions maximizing the 

enrichment of dual ligands for the A2AAR and 

MAO-B enzyme separately. The application of 

the optimal scoring scheme of each target yields 

one fused ranking of compounds for each one. 

Then these two fused ranks were aggregated in 

one final rank. By employing this first fusion 

scheme we ensure that the final ranking will be 

based upon information derived from both the 

A2AAR and the MAO-B enzyme. This fusion 

scheme will be referred as Fusion Scheme 1 

(FS1) from here on. 

The second group consisted in evaluating the 

performance of all possible ensembles resulting 

from all possible combinations of the individual 

scoring functions ranks obtained for both targets 

at the same time. Since the number of scoring 

functions employed in this study is small, it was 

possible to evaluate all their possible 

combinations of size 1 to 2N, being N the 

number of computed scoring functions per target. 

For this second approach no constrain is imposed 

during the modeling process regarding the need 

of information from both targets in the final 
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ensemble. Therefore, there is the possibility that, 

in opposition to the expected behavior, the best 

performing ensemble would contain information 

from only one of the two molecular targets.  This 

fusion scheme will be referred as Fusion Scheme 

2 (FS2) from here on. 

As mentioned before, we tested the arithmetic 

and geometric means as fusion operators. FS1 

contains three aggregation steps: the aggregation 

of A2AAR scoring functions, the aggregation of 

MAO-B scoring functions and the aggregation of 

the rankings obtained for both targets. In this 

case all possible combinations of both fusion 

operators were tested. That is, scoring functions 

were first aggregated using the same fusion 

operator, either arithmetic or geometric mean, for 

each target separately. Then in the second step 

the aggregated ranking for each target was fused 

using both aggregation operators. Considering 

that the aggregation experiments are conducted 

with the raw scores and with the scores weighted 

by number of heavy atoms, the proposed setup 

provides eight different variants of FS1. These 

variants are summarized in Table 1. 

For FS2, since the scores derived for both 

targets are considered together, there is only one 

rankings fusion step. Thus, considering that we 

studied the raw scores and the scores weighted 

by number of heavy atoms, four different setups 

were assayed. The different FS assayed in this 

scenario are summarized in Table 2. 

For each known ligand, 1607 decoys were 

selected following the procedure described in our 

previous publication [14]. This amount of decoys 

provides a ratio of active to decoy compounds of 

0.06%, which resembles a real screening 

scenario [13]. In this case the maximum EF that 

any of the individual scoring functions can 

achieve is when the selection size is set to 1% of 

the ranked list is 6.23. The best performing FS is 

presented in Table 3. 

Our results show that the best scoring 

schemes are obtained when the docking scores to 

MAO-B and A2AAR are considered together 

during the scoring fusion procedure and scores 

fusion using arithmetic mean provides better 

results than fusion using geometrical mean. Also, 

in all the examined cases the best scoring scheme 

obtained with the raw docking scores 

outperforms that obtained fusing the scores 

weighted by the number of heavy atoms. It 

should also be noted that in almost every case, 

the best enrichment is derived from more than 

one scoring function through their fusion. 

For the current validation setup the maximum 

values that the EF can reach are 100, 20 and 10 

when 1%, 5% and 8% of screened data are 

selected respectively. Taking this into 

consideration it can be seen that if 1% of the 

screened data is selected for further analyses the 

resulting virtual screening protocol is able of 

achieving 31.17% of the theoretical maximum 

enrichment. Following the same reasoning, when 

the 5% and 8% of screened data are selected the 

corresponding virtual screening tools achieve 

75% and 87.5% of the theoretical maximum of 

the EF respectively. Last but not least, the 

BEDROC values obtained for these virtual 

screening protocols are away from random 

(BEDROC=0). The accumulative curves 

corresponding to the three optimal virtual 

screening protocols are presented in Figure 1. 

The obtained results provide a set of 

approaches from which we can select the optimal 

one for the virtual screening of databases of 

chemical compounds in the search of dual MAO-

B inhibitors- A2AAR Antagonists. For example, 

if we were to select the appropriate virtual 

screening protocol for screening a database of 

chemicals and select 1% of data for further 

analysis, we should follow this procedure: 
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1. Dock the database to both MAO-B and 

A2AAR. 

2. Select the best pose of each compound in 

each target according to the grid-based 

scoring function. 

3. Rescore the best poses in A2AAR using the 

GB/SA Score, Continuous Score; Amber 

Score (everything rigid) and Amber Score 

(flexible ligand) scoring functions  

4. Rescore the best poses in MAO-B using 

the. GB/SA Score and SA_Descriptor 

Score scoring functions. 

5. Generate the individual ranking produced 

by the scoring functions GB/SA Score, 

Continuous Score; Amber Score 

(everything rigid) and Amber Score 

(flexible ligand) for A2AAR and GB/SA 

Score and SA_Descriptor Score for. 

MAO-B. 

6. Fuse the obtained individual rankings 

using arithmetic mean. 

. 

Table 1. Variants of FS1 assayed 

Fusion Scheme a Scores Type b Target Scores Fusion c Final fusion d 

FS1.1 Raw Arithmetic Mean Arithmetic Mean 

FS1.2 Raw Arithmetic Mean Geometric Mean 

FS1.3 Raw Geometric Mean Arithmetic Mean 

FS1.4 Raw Geometric Mean Geometric Mean 

FS1.5 Weighted Arithmetic Mean Arithmetic Mean 

FS1.6 Weighted Arithmetic Mean Geometric Mean 

FS1.7 Weighted Geometric Mean Arithmetic Mean 

FS1.8 Weighted Geometric Mean Geometric Mean 

a Fusion scheme identifier 
b Type of score the rankings are derived from, either the raw scores or the 

scores weighted by the number of heavy atoms 
c Fusion operator employed to fuse the rankings derived of each scoring 

function in each target 
d Fusion operator employed to aggregate the fused rankings obtained for each 

target 

Table 2. Variants of FS2 assayed 

Fusion Scheme a Scores Type b Target Scores Fusion c Final fusion d 

FS1.1 Raw Arithmetic Mean Arithmetic Mean 

FS1.2 Raw Arithmetic Mean Geometric Mean 

FS1.3 Raw Geometric Mean Arithmetic Mean 

FS1.4 Raw Geometric Mean Geometric Mean 

FS1.5 Weighted Arithmetic Mean Arithmetic Mean 

FS1.6 Weighted Arithmetic Mean Geometric Mean 

FS1.7 Weighted Geometric Mean Arithmetic Mean 

FS1.8 Weighted Geometric Mean Geometric Mean 
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a Fusion scheme identifier 
b Type of score the rankings are derived from, either the raw scores or the 

scores weighted by the number of heavy atoms 
c Fusion operator employed to fuse the rankings derived of each scoring 

function in each target 
d Fusion operator employed to aggregate the fused rankings obtained for each 

target 

Table 3. Enrichment metrics for the best performing FS 

FS Method a EF b BEDROC c AUAC d Fused Scoring Functions e 

FS2.1 31.17 0.11 0.87 
A2AAR: 3, 5, 6 ,7 

MAO-B: 3, 4 

a Employed fusion method. See Tables 2 and 3 for the detailed setup of each method 
b Enrichment Factor for the best scoring scheme. 
c BEDROC for the best scoring scheme. Alpha value is set to 160.9. 
d Area Under the Accumulative Curve for the best scoring scheme. 

e Scoring functions fused in the best scoring scheme. The following numbering is employed for 

scoring functions: 1) Grid Score; 2) PB/SA Score; 3) GB/SA Score; 4) SA_Descriptor Score; 5) 

Continuous Score; 6) Amber Score, everything rigid and 7) Amber Score, flexible ligand. 

 

  

Figure 1. Accumulative curves obtained for the best virtual screening protocol when 1%, 

5% and 8% of screened data are selected for further analysis. A) Complete curves. B) 

Curves for the first 10% of screened data. 

 

 

3. Materials and Methods 

Receptor preparation 

The crystallographic structures of the A2AAR 

in complex with the antagonist ZM241385, PDB 

code 3PWH and of the MAO-B in complex with 

a coumarin inhibitor, PDB code 2V61, were 

obtained from the Protein Data Bank 

(www.wwpdb.org) database [19]. Receptor 

preparation was carried out with UCSF Chimera 

software.[20] During receptor preparation all 

water molecules and ligands were removed and 
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hydrogen atoms and charges were added. For 

both receptors the ligand binding pocket was 

defined as any residue lying at a distance below 

5Å from the crystallographic ligand structure.  

Ligand preparation 

Sixteen known dual MAO-B inhibitors- 

A2AAR Antagonists were compiled from the 

literature [21,22]. Three dimensional conformers 

for the compounds were generated using the 

OMEGA software [23]. A maximum of 500000 

conformations per molecule were generated 

using an energy window of 100 kcal/mol. All 

rotatable bonds were considered during the 

torsion search using the Merck Molecular Force 

Field (MMFF) and duplicate conformers were 

discarded based on a RMS value of 0.5 Å. A 

maximum number of 200 conformers were saved 

for each compound. Afterwards, AM1-BCC 

charges were added to each conformer using the 

MOLCHARGE programs that is part of the 

QUACPAC package.[24]. 

Decoy molecules selection 

Decoys selection was a based on a 

desirability-based home-developed algorithm 

that has been previously employed in the 

selection of tailored decoy sets for the validation 

of virtual screening strategies [14]. Decoys were 

prepared for molecular docking following the 

same protocol described above for ligands. 

Molecular Docking 

Molecular docking was performed with the 

DOCK v6.6 software.[25] A maximum of 2000 

orientations per ligand was explored allowing a 

maximum of two bumps between the ligand and 

the receptor. Bumps were defined as any pair of 

atoms closer than the 75% of the sum of their 

Van der Waals radii. The energy grid-based 

scoring function was selected for poses quality 

evaluation. The pose with the lowest score for 

each ligand conformer was saved, allowing for a 

maximum of 200 saved poses. 

For interaction energies calculation, a grid 

was pre-computed for the receptor binding 

pocket region. The grid spacing was set to 0.3 Å 

and the attractive and repulsive Van der Waals 

coefficients were set to 6 and 12 respectively. 

Calculations were performed considering an all-

atoms model. 

Molecular docking post-processing 

The molecular docking protocol described 

above results in 200 docked conformations of 

each compound being saved. For every 

compound the best scored conformation was 

selected for further rescoring using six scoring 

functions implemented in DOCK. The scoring 

functions used for poses rescoring were: PB/SA 

Score, AMBER Score considering the whole 

complex as rigid, AMBER Score considering the 

ligand as flexible, Hawkins GB/SA Score and 

Solvent Accessible Surface Area (SASA) Score. 

These rescoring calculations plus the previous 

grid-based scoring employed for poses 

evaluation and selection provide seven different 

ways of evaluating the ligand-receptor 

interaction energies. In addition to the raw 

docking scores, the scoring value of each 

compound was weighted by the number of heavy 

atoms on it. 

The seven computed scoring functions were 

used for the implementation of a consensus 

ranking scheme. Instead of combining the raw 

scoring values coming from different scoring 

functions, the ranks produced by these scoring 

functions were combined following the 

procedure described next. Firstly, the rank 

derived from each scoring function was 

produced. Then, for a specific combination of 

scoring functions, a fused rank was computed as 

either the arithmetic or geometric mean of the 

compound’s rank in the individual models. 

To evaluate the performance of the developed 

models in a virtual screening scenario the 
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following metrics were computed: Area Under 

the Accumulation Curve (AUAC); Area under 

the Receiver Operating Characteristic Curve 

(ROC); Enrichment factor (EF) and Boltzmann-

enhanced discrimination of ROC 

(BEDROC).[26] Here the same definitions 

proposed by Truchon et al. are used.[26] 

..

4. Conclusions 

We investigated different variants of docking scores fusion for maximizing the enrichment of dual 

target ligands of the Adenosine A2A Receptor and the Monoamine Oxidase B enzyme in virtual 

screening experiments. Our results show that for achieving high values of dual ligands enrichment, 

information relative to docking scores to both targets have to be combined. In addition, no single 

scoring function can be employed for achieving good virtual screening performance. Instead, 

combining the rankings derived from different scoring functions proved to be a valuable strategy for 

improving the enrichment relative to single scoring function in virtual screening experiments. 
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