Two QSAR Paradigms- Congenericity Principle versus Diversity Begets
Diversity Principle- analyzed using computed mathematical
chemodescriptors of homogeneous and diverse sets of chemical mutagens

#### Subhash C. Basak

International Society of Mathematical Chemistry and Natural Resources Research Institute & Department of Chemistry and Biochemistry, University of Minnesota Duluth, USA Subhabrata Majumdar

School of Statistics University of Minnesota Twin Cities Minneapolis, MN, USA



## QSAR development

The basic idea underlying QSAR development can be conveniently expressed by the following equation:

$$P = f(S)$$
 ..... Eq. 1

where P is any physical, biological, medicinal or toxicological property of interest and S represents the relevant aspect of the structure that determines the property.



## Congenericity principle

QSARs are usually developed on congeneric sets of chemicals based on the structure- property similarity principle.



# Diversity begets diversity principle

From QSARs of various congeneric and diverse data sets we observed that for good QSAR of diverse sets we need a diverse collection of descriptors— the diversity begets diversity principle



### Results

Starting with the same collection of molecular descriptors, QSARs for a congeneric set of 95 amine mutagens and diverse set of 508 mutagens were developed

While the amines had only 7 significant descriptors, the diverse set had 42 significant descriptors



### Conclusion

The results supports the "Diversity begets diversity" hypothesis. Further comparative studies using congeneric and diverse data sets are needed to test the validity of this hypothesis.

