Ab initio generation of binary alloy foams: the case of amorphous $Cu_{64}Zr_{36}$

<u>Jonathan Galván</u>

Ariel A. Valladares

Renela M. Valladares

Alexander Valladares

Materials Research Institute, UNAM

Background 0000		Results 000 0	Conclusions
Outline			

Background

Experimental and theoretical methods

2 Why amorphous porous metals?

Bulk metallic glasses and porous metals

Method

The Process

Results

- Pair Distribution Functions
- Bond-Angle Distribution (BAD)

Conclusions 5

Background		Results 000 0	Conclusions

Background

Background ●000			Results 000 0	Conclusions	
Experimental and theoretical methods					

Experimental pore-making I

- Gas-generated foams
 - Bubbling gas into molten metals
 - Gas releasing from chemical-breaking at high temperatures when adding powders to molten metals
 - H can be dissolved in many liquid metals; upon solidification, H is rejected
- Template porous
 - Casting into a mold
 - Powder deposition
 - Decomposition
 - Electrodeposition

Background 0●00		Results 000 0	Conclusions
Experimental and theore	tical methods		

Experimental pore-making II

- Individual elements assembly
 - Spray forming
 - Sintering powders, wires or hollow spheres
 - Selective sintering
- Removable 2nd phase
 - Casting into space holders
 - Sintering with space holders
 - Replication
 - Dealloying (small scale pores \sim several nm)

Clyne, University of Cambridge (2010)

Background 00●0			Results 000 0	Conclusions	
Experimental and theoretical methods					
Farly wor	ks				

- The first successful method to create a bulk metallic glass foam was reported by Schroers *et al.* $Pd_{43}Cu_{27}Ni_{10}P_{20}$ with pores of 200-1000 μ m
- Brothers and Dunand reported the foaming of a Zr-based alloy by rapid quenching in 2004: $Zr_{57}Nb_5Cu_{15.4}Ni_{12.6}Al_{10}$ with pore sizes of 25-50 μm
- Successive experimental works were focused on multicomponent alloys: $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3,\ Fe_{48}Cr_{15}Mo_{14}Y_2C_{15}B_6,\ and Mg_{60}Cu_{21}Ag_7Gd_{12}$

Schroers et al., App. Phys. Lett. 82, 370 (2003) Brothers, Dunand, App. Phys. Lett 84, 1108 (2004) Lee, Sordelet, App. Phys. Lett. 89 (2006) Demetreiou et al., Scripta Mater. 57, 9 (2007) Brothers et al., J. App. Phys. 102, 023508 (2007)

Background 000●			Results 000 0	Conclusions
Experimental and theoretical methods				

Porous materials from simulations

- Reconstructive approach:
 - The model structure is based on experimental reference data
 - Problem of uniqueness arises
 - Reverse Monte Carlo: energy determined by how well the structure reproduces empirical data, e.g., structure factor
- Mimetic approach
 - Mimics physical and chemical processes to generate the experimental sample
 - Monte Carlo or Molecular Dynamics are used to model the evolution of the structure from a starting state
 - Empirical or semi-empirical potentials have no transferability
- Pores are manually carved in the structure
- No ab initio approaches have been cited

Background	Why amorphous porous metals?		Conclusions

Why amorphous porous metals?

Background 0000	Why amorphous porous metals? ●0000		Results 000 0	Conclusions	
Bulk metallic glasses and porous metals					

Bulk metallic glasses - Properties

- Lack of long range order
- Glass Forming Ability depends on contents
- Enhanced mechanical properties than other crystalline materials
- High viscosity
- Micro- and nano-size forming molds
- Catalysts
- High wear and corrosion resistance

Kumar, Tang, Schroers, Nature 457, 868 (2009)

Background 0000	Why amorphous porous metals? ○●○○○	Results 000 0	Conclusions
Bulk metallic glasses and	l porous metals		

Bulk metallic glasses - Drawbacks

- Lack of ductility
- Size-growth limit
- High brittleness
- Generation techniques are under development
- Higher serial production costs than crystalline counterparts

Background 0000	Why amorphous porous metals? ○○●○○		Results 000 0	Conclusions	
Bulk metallic glasses and porous metals					

Metallic foams and sponges - Properties

- Research dates back to early 1990s
- Improved mechanical properties under compression, bending and torsion
- Lightweight structures
- Impact/blast mitigation
- Fluid filters
- Gas storage

Erlebacher, Nature 410, 450 (2001)

Background 0000	Why amorphous porous metals? ○○○●○		Results 000 0	Conclusions	
Bulk metallic glasses and porous metals					

Metallic foams and sponges - Drawbacks

- Mechanical properties limited by the base alloys
- Difficult fabrication processes
- External phases while foaming due to blowing agents or solid placeholders
- Pore size control in the nano-regime

Erlebacher, Nature 410, 450 (2001)

Background 0000	Why amorphous porous metals? ○○○○●	Results 000 0	Conclusions
Bulk metallic glasses	and porous metals		
Amorpho	us porous alloys		

- Combine both properties of amorphous metals and metallic foams
 - Experimental procedures design becomes complex
 - Computer simulation modeling is useful to predict properties: topological, electronic, vibrational, mechanical, etc.
 - Brand-new research field \sim 10 years

Background 0000	Method ೦೦೦	Results 000 0	Conclusions

Method

Background 0000	Method ●00	Results 000 0	Conclusions
The Process			

The Expanding Lattice (EL) Method

The edge of the cubic cell is enlarged and the interatomic distances are proportionally increased. The volume increases and the density decreases as $I_2 = 2^{1/3}I_1$ for a 50 % of porosity.

- This approach has been applied to semiconductors and pure metals, such as: carbon, silicon, aluminum, copper and gold.
- Some properties as eDOS and vDOS have been calculated for amorphous nanoporous carbon which have agreed with other simulations and experimental data.
- Energetics of hydrogen adsorption have been calculated in amorphous nanoporous carbon and silicon.

Valladares et al., Mater. Res. Soc. Symp. Proc. 971 (2007) Valladares et al., Mater. Res. Soc. Symp. Proc. 988 (2007) Valladares et al., Mater. Res. Soc. Symp. Proc. 1042 (2008) Romero et al., Materials 3, 467 (2010) Santiago-Cortés et al., J. Non-Cryst. Solids 358, 596 (2012) Romero et al., J. Non-Cryst. Solids 362, 14 (2013)

Ab initio generation of binary alloy foams: the case of ${\rm Cu}_{64}{\rm Zr}_{36}$

Background 0000	Method ○●○	Results 000 0	Conclusions
The Process			

The EL method in 108-atom $Cu_{64}Zr_{36}$

From crystal

Background 0000	Method 0●0	Results 000 0	Conclusions
The Process			

The EL method in 108-atom $Cu_{64}Zr_{36}$

From amorphous

Valladares et al., Materials 4 (2011) Galván-Colín, et al., Mater. Res. Soc. Symp. Proc. 1517 (2013) Galván-Colín, et al., Physica B 475 (2015)

Ab initio generation of binary alloy foams: the case of ${\rm Cu}_{64}{\rm Zr}_{36}$

Background 0000		Results 000 0	Conclusions

Results

Background 0000		Results	Conclusions

OPT-generated ap-Cu₆₄Zr₃₆ structures

From crystal

From amorphous

Ab initio generation of binary alloy foams: the case of $Cu_{64}Zr_{36}$ 2nd International Electronic Conference on Materials, 2-16 May 2016 IIM-UNAM

Background 0000		Results 000 0	Conclusions

AIMD-generated ap-Cu₆₄Zr₃₆ structures

From crystal

From amorphous

Ab initio generation of binary alloy foams: the case of $Cu_{64}Zr_{36}$ 2nd International Electronic Conference on Materials, 2-16 May 2016 IIM-UNAM

Background 0000		Results ●00 ○	Conclusions
Pair Distribution Functio	ns		

ap-Cu₆₄Zr₃₆ Cu-Cu partials

Ab initio generation of binary alloy foams: the case of ${\rm Cu}_{64}{\rm Zr}_{36}$

Background 0000		Results ●00 ○	Conclusions
Pair Distribution Functio	ns		

ap-Cu₆₄Zr₃₆ Cu-Zr partials

Ab initio generation of binary alloy foams: the case of ${\rm Cu}_{64}{\rm Zr}_{36}$

Background 0000		Results ●00 ○	Conclusions
Pair Distribution Fund	ctions		

ap-Cu₆₄Zr₃₆ Zr-Zr partials

Ab initio generation of binary alloy foams: the case of ${\rm Cu}_{64}{\rm Zr}_{36}$

Background 0000		Results ●00 ○	Conclusions
Pair Distribution Fu	nctions		

ap-Cu₆₄Zr₃₆ OPT comparison of total PDF

Ab initio generation of binary alloy foams: the case of ${\rm Cu}_{64}{\rm Zr}_{36}$

Background 0000		Results ●00 ○	Conclusions
Pair Distribution Eu	unctions		

ap-Cu₆₄Zr₃₆ AIMD comparison of total PDF

Ab initio generation of binary alloy foams: the case of Cu₆₄Zr₃₆₁

Background 0000		Results 0●0 0	Conclusions

Pair Distribution Functions

1st neighbor positions and coordination numbers

	$r_{\rm Cu-Cu}$	$r_{\rm Cu-Zr}$	$r_{\mathrm{Zr-Zr}}$	r_{Total}
ap-c-OPT	2.43	2.68	2.98	2.58
ap-a-OPT	2.43	2.73	2.93	2.58
ap-c-AIMD	2.43	2.73	2.98	2.58
ap-a-AIMD	2.48	2.68	2.93	2.58
$a-Cu_{64}Zr_{36}$	2.45	2.75	3.15	2.70

Background 0000		Results 0●0 0	Conclusions

1st neighbor positions and coordination numbers

		r_{Cu-Cu}	r_{Cu-Zr}	$r_{\mathrm{Zr-Zr}}$	r_{Total}		
	ap-c-OPT	2.43	2.68	2.98	2.58		
	ap-a-OPT	2.43	2.73	2.93	2.58		
	ap-c-AIMD	2.43	2.73	2.98	2.58		
	ap-a-AIMD	2.48	2.68	2.93	2.58		
	$a-Cu_{64}Zr_{36}$	2.45	2.75	3.15	2.70		
	$N_{\rm Cu-Cu}$	$N_{\rm Cu-Zr}$	$N_{\rm Zr\text{-}Cu}$	$N_{\rm Zr\text{-}Zr}$	N_{Cu}	N_{Zr}	N_{Total}
ap-c-OPT	4.5	3.8	6.7	3.7	8.3	10.4	9.0
ap-a-OPT	4.8	3.7	6.6	3.7	8.5	10.3	9.1
ap-c-AIMD	4.4	3.8	6.7	4.2	8.2	10.9	9.1
ap-a-AIMD	4.6	3.5	6.2	4.1	8.1	10.3	8.9
$a-Cu_{64}Zr_{36}$	6.7	5.3	9.4	6.3	12	15.7	13.2

Ab initio generation of binary alloy foams: the case of Cu64Zr36

Background 0000			Results 00● 0	Conclusions
Pair Distribution Function	ıs			

ap-Cu₆₄Zr₃₆ OPT depletion in total PDF

Ab initio generation of binary alloy foams: the case of ${\rm Cu}_{64}{\rm Zr}_{36}$

Background 0000			Results 00● 0	Conclusions
Pair Distribution Functions				

ap-Cu₆₄Zr₃₆ AIMD depletion in toatl PDF

Ab initio generation of binary alloy foams: the case of ${\rm Cu}_{64}{\rm Zr}_{36}$

Background 0000		Results 00● 0	Conclusions
Pair Distribution Function			

Pore size estimation

	Pore size (Å)
ap-c-OPT	7.1
ap-a-OPT	7.5
ap-c-AIMD	2.1/3.9
ap-a-AIMD	5.6

Background 0000		Results 00● 0	Conclusions
Pair Distribution Functio	ns		

Pore size estimation

		1 20
		115 A ap-c-OPT
	Pore size (Å)	110 ap-a-OPT
ap-c-OPT	7.1	1.05 -
ap-a-OPT	7.5	E 1.00
ap-c-AIMD	2.1/3.9	0.95
ap-a-AIMD	5.6	0.90
		0.85
		$0.80 \frac{1}{6}$, 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14

r (Angstroms)

Background 0000		Results 00● 0	Conclusions
Pair Distribution Functi	ons		

Pore size estimation

	Pore size (Å)
ap-c-OPT	7.1
ap-a-OPT	7.5
ap-c-AIMD	2.1/3.9
ap-a-AIMD	5.6

Background 0000			Results ○○○ ●	Conclusions	
Bond-Angle Distribution (BAD)					

BAD ap-Cu₆₄Zr₃₆ OPT

Ab initio generation of binary alloy foams: the case of ${\rm Cu}_{64}{\rm Zr}_{36}$

Background 0000			Results ○○○ ●	Conclusions	
Bond-Angle Distribution (BAD)					

BAD ap-Cu₆₄Zr₃₆ AIMD

Ab initio generation of binary alloy foams: the case of ${\rm Cu}_{64}{\rm Zr}_{36}$

Background 0000		Results 000 0	Conclusions

Conclusions and future development

Background		Conclusions

- We applied the expanding lattice method to obtain nano porous amorphous Cu₆₄Zr₃₆ at room temperature by means of *ab initio* molecular dynamics and geometry optimization only.
- The initial amorphous structures became porous whereas the initial crystal cells become both porous and amorphous.
- Larger pores that appeared in simulations with an initial amorphous configuration may be related to a higher energetic cost of disordering initial crystalline structures after EL.
- Low coordination is a consequence of a competition between surface and bulk contributions.
- BAD sharp peak around 60° suggests the existence of distorted Frank-Kasper polyhedra.
- Larger simulation cells would provide insight to verify whether pore topology is cell-size dependent (through and dendritic pores).

Background 0000		Results 000 0	Conclusions
What's nex	t		

- Use a larger number of atoms to study pore size and geometry.
- Study other binary and ternary alloys.
- Try different concentrations of Cu-Zr alloy.
- Generate amorphous nanoporous structures with different porosity.
- AIMD at higher temperatures to see its influence in the amorphization process of initial crystalline models.

Background 0000		Results 000 0	Conclusions

Our workgroup

- Prof. Ariel A. Valladares
- Prof. Renela Valladares
- Prof. Alexander Valladares

Students

- Martín Mejía
- Juan Carlos Noyola
- Cristina Romero
- Zaahel Mata
- Sebastián Tamariz
- Jozra Garrido
- Isaías Rodríguez

Former students

- Ph.D. Fernando Álvarez
- Ph.D. Rubén Estrada
- Ph.D. Emilye Rosas
- Ph.D. Ángel Reyes
- Ph.D. Andrés Díaz
- Ph.D. Ulises Santiago

Thank you for your attention!