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Abstract: Stueckelberg–Horwitz–Piron (SHP) electrodynamics formalizes the distinction between
coordinate time (measured by laboratory clocks) and chronology (temporal ordering) by defining 4D
spacetime events xµ as functions of an external evolution parameter τ. Classical spacetime events
xµ(τ), evolving as τ grows monotonically, trace out particle worldlines dynamically and induce
the five U(1) gauge potentials through which events interact. Since Lorentz invariance imposes
time reversal symmetry on x0 but not τ, the formalism resolves grandfather paradoxes and related
problems of irreversibility. Nevertheless, the causal structure of the 5D Green’s function introduces
singularities associated with the τ-dependence of the induced fields, which are regularized by
generalizing the action to include a higher order kinetic term for the fields. The resulting theory
remains gauge and Lorentz invariant, and the related QED is super-renormalizable. The field
equations are Maxwell-like but τ-dependent and sourced by a current that represents a statistical
ensemble of events distributed along the worldline. The width of the distribution defines a mass
spectrum for the photons that carry the interaction. As the width becomes very large, the photon
mass goes to zero and the field equations become τ-independent Maxwell’s equations. Maxwell
theory thus emerges as an equilibrium limit of SHP. Particles and fields can exchange mass in the
SHP theory, however on-shell particle mass is restored through self-interaction.
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1. Introduction

In developing his interpretation of antiparticles as particles traveling backward in time,
Stueckelberg [1,2] sought to demonstrate that pair creation/annihilation processes appear naturally
in a thoroughly deterministic and classical relativistic Hamiltonian mechanics. He described a
particle as the worldline traced out by a spacetime event xµ (τ) evolving dynamically as the Poincaré
invariant parameter proceeds monotonically from τ = −∞ to τ = ∞. Stueckelberg argued that pair
annihilation is observed when the coordinate time x0(τ) reverses direction, because for some values
x0

2 > x0
1 of the laboratory clock there will be two solutions to x0(τ) = x0

1 but no solution to x0(τ) = x0
2.

Such trajectories must overcome the mass-shell constraint which by keeping ẋ2 from changing sign,
prevents the event from crossing the spacelike region that separates future-oriented trajectories from
past-oriented trajectories. Horwitz and Piron [3] extended these ideas in constructing a canonical
relativistic mechanics for the two-body problem with a scalar interaction, and Horwitz et. al. [4–8]
found relativistic generalizations of the standard central force problems. Study of radiative transitions
[9–11] indicates that both the scalar potential and 4-vector potential are required to account for known
phenomenology. Sa’ad, Horwitz, and Arshansky [12] proposed a unification of the five potentials by
extending gauge invariance to include τ-dependent transformations. Adopting the conventions

µ, ν = 0, 1, 2, 3 α, β, γ = 0, 1, 2, 3, 5 gαβ = diag(−1, 1, 1, 1,±1) (1)

The 3rd International Electronic and Flipped Conference on Entropy and Applications (ECEA 2016), 1–10 November 2016;
Sciforum Electronic Conference Series, Vol. 3, 2016

http://www.mdpi.com


The 3rd International Electronic and Flipped Conference on Entropy and Applications (ECEA 2016), 1–10 November 2016;
Sciforum Electronic Conference Series, Vol. 3, 2016

and in analogy with the notation x0 = ct, making the formal designations x5 = c5τ and ∂5 =
1
c5

∂τ ,

the event dynamics of Stueckelberg-Horwitz-Piron (SHP) are defined by the Lagrangian

L =
1
2

Mẋµ ẋµ +
e
c

ẋαaα(x, τ) =
1
2

Mẋµ ẋµ +
e
c

ẋµaµ(x, τ) + e
c5

c
a5(x, τ) (2)

which leads to the Lorentz force

Mẍµ =
e
c

f µ
α(x, τ)ẋα d

dτ
(− 1

2 Mẋ2) = g55 e
c5

c
f 5µ(x, τ)ẋµ (3)

where the 10 field strengths are f α
β = ∂αaβ − ∂βaα. The second of (3) permits mass exchange

between particles and fields, thus permitting pair processes. The Lagrangian (2) is unique up to
the τ-dependent gauge transformations

aα(x, τ)→ aα(x, τ) + ∂αΛ(x, τ) (4)

and in the associated quantum mechanics the wavefunction is invariant under U(1) phase
transformations generated by Λ(x, τ). It has been shown [13] that this system describes the most
general classical interaction in flat spacetime consistent with the quantum commutation relations

[xµ, xν] = 0 m [xµ, ẋν] = −ih̄gµν (x) . (5)

To complete the dynamical picture we define the current

Ẋαaα →
∫

d4x Ẋα(τ)δ4 (x− X(τ)
)

aα(x, τ) =
1
c

∫
d4x jα(x, τ)aα(x, τ)

jα(x, τ) = cẊα(τ)δ4 (x− X(τ)
) (6)

and make some choice of kinetic action term for the fields, the most obvious candidate being

Sfield =
1
4c

∫
dτd4x f αβ(x, τ) fαβ (x, τ) . (7)

The resulting action leads to Maxwell-like field equations that admit a wave equation and a Green’s
function, which can be used to derive the fields for specific event trajectories. But one is immediately
confronted by conceptual difficulties in attempting to describe even the simple case of low energy
Coulomb scattering. The potential induced by a ‘static’ particle, an event evolving uniformly along
the x0 axis, contains singularities of the form δ

(
(τ − t)2 − |x|2/c2), rendering comparison with

known phenomenology nearly impossible. In the following section, we introduce a higher order
term for Sfield that removes singularities of this type.

2. Non-local field kinetics ⇔ ensemble of events

The singularities can be repaired by writing the action with a slightly less obvious candidate for
the field kinetic term, the non-local form

Sem =
∫

d4xdτ

{
e
c2 jα(x, τ)aα(x, τ)−

∫ ds
λ

1
4c

[
f αβ(x, τ)Φ(τ − s) fαβ (x, s)

]}
(8)

where λ is a parameter with dimensions of time and the field interaction kernel is

Φ(τ) = δ (τ)−
(

λ

2

)2
δ′′ (τ) =

∫ dκ

2π

[
1 +

(
λκ

2

)2
]

e−iκτ . (9)

2
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We write the inverse function of the interaction kernel as

ϕ(τ) = λΦ−1(τ) = λ
∫ dκ

2π

e−iκτ

1 + (λκ/2)2 = e−2|τ|/λ (10)

which satisfies ∫ ds
λ

ϕ (τ − s)Φ (s) = δ(τ)
∫ dτ

λ
ϕ (τ) = 1. (11)

Varying the action (8) with respect to the potentials, leads to field equations

∂β f αβ
Φ (x, τ) = ∂β

∫ ds
λ

Φ(τ − s) f αβ(x, s) =
e
c

jα(x, τ) (12)

describing the non-local superposition of fields f αβ
Φ sourced by the instantaneous event current

jα(x, τ). Using (11) to remove Φ(τ) from the LHS we obtain equations for the local field sourced
by a non-local superposition of event currents,

∂β f αβ (x, τ) =
e
c

∫
ds ϕ (τ − s) jα (x, s) =

e
c

jαϕ (x, τ) (13)

which are formally similar to 5D Maxwell’s equations. Expanding to 4D tensor, vector and scalar
components and including the Bianci identity, we obtain the pre-Maxwell equations

∂ν f µν − 1
c5

∂τ f 5µ =
e
c

jµ
ϕ ∂µ f 5µ =

e
c

j5ϕ =
c5

c
eρϕ

∂µ fνρ + ∂ν fρµ + ∂ρ fµν = 0 ∂ν f5µ − ∂µ f5ν +
1
c5

∂τ fµν = 0
(14)

which may be compared with the 3-vector form of Maxwell’s equations. Shifting the integral in the
source of the inhomogeneous equation (13) as

jα
ϕ (x, τ) =

∫
ds ϕ (τ − s) jα (x, s) =

∫
ds e−2|s|/λ jα (x, τ − s) (15)

we recognize jα
ϕ (x, τ) as a weighted superposition of currents originating at events Xµ(τ − s)

displaced from Xµ(τ) by an amount s along the worldline. We regard this superposition as the
current produced by an ensemble of events in the neighborhood of Xµ(τ), a view encouraged
by the particular weight function ϕ(s). Given a Poisson distribution describing the occurrence of
independent random events with a constant average rate of 1/λ events per second, the average time
between events is λ and the probability at τ that the next event will occur following a time interval
s > 0 is just e−s/λ/λ. Extending the displacement to positive and negative values, the ensemble is
constructed by assembling a set of event currents jα (x, τ − s) along the worldline, each weighted by
ϕ(s), the probability that the occurrence of this event is delayed from τ by an interval of at least |s|.
Causality relations embedded in the Green’s function will select the one event from this ensemble at
lightlike separation from the interacting event.

The pre-Maxwell equations in Lorenz gauge lead to the wave equation and Green’s function [14]

∂β∂βaα =
(

∂µ∂µ +
(

g55/c2
5

)
∂2

τ

)
aα = − e

c
jα
ϕ (x, τ) (16)

GP(x, τ) = − 1
2π

δ(x2)δ(τ)− c5

2π2
∂

∂x2

θ(−g55gαβxαxβ)√
−g55gαβxαxβ

= GMaxwell + GCorrelation. (17)

The contribution from GCorrelation is smaller than that of GMaxwell by c5/c and drops off as 1/ |x|2,
so it may be neglected at low energy [15]. The δ-functions in GMaxwell have support only at the
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retarded time τR that solves (x− X(τR))
2 = 0 and x0 > X0 (τR). Thus, while the current that sources

the pre-Maxwell field represents an ensemble of events along the worldline, the retarded causality
of the Green’s function selects the one member of the ensemble that intersects the lightcone of the
observation point. We find the standard Liénard-Wiechert potential multiplied by ϕ (τ − τR)

aα (x, τ) =
e

2π

∫
ds ϕ (τ − s) Ẋα(s) δ

[
(x− Xα(s))2

]
=

e
4π

ϕ (τ − τR) Ẋα (τR)∣∣(xµ − Xµ (τR)) Ẋµ (τR)
∣∣ . (18)

The remaining τ-dependence of the fields resides in the finite function ϕ and expresses the relative
time synchronization between the source and a test event experiencing the potential at the spacetime
point x at the chronological time τ. To find the Coulomb potential we specify the event trajectory
X (τ) =

(
c(τ + τ0), 0

)
and (18) becomes

a0(x, τ) =
e

4π|x| ϕ
(

τ + τ0 −
(

t− |x|
c

))
a5(x, τ) =

c5

c
a0(x, τ). (19)

For a test event evolving along a parallel trajectory at x(τ) = (c(τ + τ0), x)

a0(x, τ) =
e

4π|x| e
−|x|/λc (20)

which has the form of a Yukawa-type potential with photon mass mγ ∼ h̄/λc2. For large λ, the
current ensemble spreads along the worldline, the potential becomes Coulomb-like, the information
entropy decreases and the photon mass is small1. The factor λ plays a similar role in QED. Although
dimensional considerations suggest that photon loops in 5D would render SHP non-renormalizable,
quantization of the higher order field kinetic term inserts a mass cut-off into the photon propagator
factor [

gµν − kµkν

k2

]
−i

k2 + g55κ2 − iε
1

1 + λ2κ2 (21)

making the theory super-renormalizable at second order.
Following an argument by Stueckelberg, Saad et. al. noticed [12] that by requiring j5ϕ(x, τ) and

f 5µ(x, τ) to vanish pointwise in x as τ → ±∞, integration of the pre-Maxwell equations over τ

recovers Maxwell’s equations, where Maxwell fields and currents are identified as the τ integrals of
corresponding τ-dependent SHP quantities. In particular, integration of (15) with (6) using (11)

Jµ(x) = c
∫

dτ
∫

ds ϕ (τ − s) Ẋµ(s)δ4 (x− X(s)
)
= c

∫
ds Ẋµ(s)δ4 (x− X(s)

)
(22)

recovers the Maxwell current in standard form. This integration has been called concatenation and
is understood as aggregation over chronological time τ of all events that occur at some spacetime
point xµ. Another approach [15] to retrieving Maxwell theory from SHP is to slow the τ-evolution to
zero by taking c5/c → 0, thus freezing the microscopic system into a static equilibrium2. Under this
condition the homogeneous pre-Maxwell equation (14) imposes

c5
(
∂ν f5µ − ∂µ f5ν

)
+ ∂τ fµν = 0 −−−−−−−→

c5→0
∂τ fµν = 0 (23)

requiring that the field strength f µν be τ-independent in this limit. As seen in the Liénard-Wiechert
potential, the τ-dependence of the fields resides in ϕ(τ − τR) and can only be suppressed by taking

1 Taking mγ as the experimental error on the mass of the photon (10−18eV/c2) we may estimate λ > 10−2 seconds.
2 Asymmetry between the cross-sections for elastic particle-particle and particle-antiparticle scattering depends on a factor

(1± c5/c) and so a dynamical SHP theory requires 0 < c5/c� 1.
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λ → ∞. In this limit ϕ(τ) → 1, all field components become τ-independent and the photon mass
mγ ∼ h̄/λc2 vanishes. Assigning equal weight to all event currents jα(x, τ) in the ensemble jα

ϕ(x, τ)

effectively collapses the entire worldline into a single source event. The standard Maxwell particle
current is recovered3 as

jαϕ (x, τ) =
∫

ds 1 · jα (x, s) = Jα(x) ⇒ ∂µ jµ
ϕ (x, τ) +

1
c5

∂τ j5ϕ (x, τ) = ∂µ Jµ (x) = 0. (24)

One sees in (14) that f µν decouples from f 5µ and satisfies Maxwell’s equations.
While mass exchange must be present in any classical theory of pair processes and must also

be small to account for standard electromagnetic phenomenology, such a compromise cannot explain
the fixed masses of elementary particles. Nevertheless, there are indications [16] that under certain
circumstances a self-interaction induced by GCorrelation has the effect of restoring on-shell evolution
in event trajectories and thus returning the particle worldline to the observed fixed mass. A more
general approach is found in the statistical mechanics of the many-event system. While the model
presented here describes a particle as a weighted ensemble of events ϕ(s)Xµ(τ − s) along a single
worldline, Horwitz has modeled [17] a particle as an ensemble of n independent spacetime events
Xµ

i (τ), i = 1, 2, . . . , n defined at a given τ. He has shown that the total particle mass is determined
by a chemical potential. Following collisions governed by a general class of interactions that includes
pair processes, particles return to their equilibrium mass values. These developments indicate that
the statistical mechanics of event ensembles will be a fruitful way to understand mass.

3. Discussion

While defining the system in an unconstrained 8D phase space relaxes the a priori mass shell
relation ẋ2 = c2 and thus permits classical trajectories that reverse the direction of their time
evolution, it also eliminates reparametrization invariance4. In SHP electrodynamics the evolution
parameter τ cannot be identified as the proper time of the motion, but is a dynamical quantity
proportional to it through

c2 ds2(τ) = −gµνdxµdxν = −ẋ2(τ) dτ2. (25)

Therefore, the parameter τ plays the role of an irreducible chronological time, independent of the
spacetime coordinates and similar to the external time t in nonrelativistic Newtonian mechanics. It
determines the temporal ordering of events — the order of their physical occurrence — which may
differ from the order of observed coordinate times x0 registered by laboratory clocks as the events
appear in measuring apparatus. As Horwitz has observed, grandfather paradoxes may be resolved
by noticing that the return trip to a past coordinate time x0 must take place while the chronological
time τ continues to increase. The occurrence of event xµ(τ1) at τ1 is understood to be an irreversible
process that cannot be changed by a subsequent event occurring at the same spacetime location,
xµ(τ2) = xµ(τ1) with τ2 > τ1. This absence of closed timelike curves similarly applies in SHP
quantum electrodynamics [18] where the particle propagator G(x2 − x1, τ2 − τ1) vanishes5 unless
τ2 > τ1, thus preventing divergent matter loops, when x2 = x1. This explicit distinction between
chronological and coordinate time [21] describes a microscopic event dynamics in which a covariant
Hamiltonian generates evolution of a 4D block universe defined at τ to an infinitesimally close 4D
block universe defined at τ + dτ. Standard Maxwell electrodynamics emerges as an equilibrium limit
in which the system becomes τ-independent, and the 4D block universe remains static.

3 The current (1/c5) j5ϕ (x, τ) remains finite because j5(x, τ) includes the factor Ẋ5 = c5.
4 The mass shell constraint and reparametrization invariance are related features of a Lagrangian that is homogeneous of

first degree in the velocities, which is not the case for (2).
5 The equivalence of τ-retarded causality to the Feynman contour in evaluating propagators was first observed by Feynman

in connection with the path integral for the Klein-Gordon equation [19,20]. In SHP QED it also emerges from the vacuum
expectation value of τ-ordered operator products.
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For Stueckelberg, pair processes provide empirical evidence that time must be understood as
two distinct physical phenomena, chronology and coordinate, and so must be formalized through
independent quantities τ and (x0, x) in a physically reasonable theory. As a result, there is no static
configuration in SHP — a particle may only remain at the origin in its rest frame for all coordinate
time x0 if its underlying microscopic event continually and uniformly evolves along its time axis,
as x =

(
c(τ + τ0), 0

)
. The coordinate x0 = cτ0 at τ = 0 is not simply an artifact of initializing

a system clock, because the field (20) induced by this event trajectory depends explicitly on the
constant τ0. The irreversible concatenation performed on (20) by a measuring apparatus recovers the
familiar Coulomb potential with no dependence on τ0 or even on the details of the weight function
ϕ(τ). Similarly, τ0 plays no role in the quantized theory where sharply defined mass-momentum
states retain no information about the initial conditions of coordinates. Nevertheless, in classical
SHP the microscopic event dynamics are determined by the Lorentz force (3) and so a test event at
x(τ) = (c(τ + τ′0), x) will experience a Coulomb force depending on the synchronization τ0 − τ′0.
The higher order kinetic term

(
∂τ f αβ

) (
∂τ fαβ

)
smooths the current and potential by associating with

an event Xµ(τ) an ensemble whose members are of the form ϕ(s)Xµ(τ − s), where the weight ϕ(s)
is the probability that a process generating independent random events at a constant average rate
will produce an event occurring at displacement s from time τ. A single member of the ensemble is
selected by the causal properties of the Green’s function when determining the potential induced by
the event trajectory. Exclusion of the higher order term from the electromagnetic action is equivalent
to taking ϕ(τ) = λδ(τ), which does recover the concatenated Coulomb force but renders the Lorentz
force difficult, if not impossible, to reconcile with known phenomenology. A term of this type has
also been considered by Pavsic for brane interactions [22].
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