

1st International Electronic Conference on Metabolomics

1-30 November 2016 chaired by Dr. Peter Meikle

Clinical Metabolomics: Analytical Tool for Drug Development.

Vladimir Tolstikov ^{1,*}

¹ Director of Metabolomics, BERG LLC, Framingham, MA 01701, U.S.A.

* Corresponding author: vladimir.tolstikov@berghealth.com

Clinical Metabolomics: Analytical Tool for Drug Development.

Abstract: It is recognized that altered metabolic states reports on the chronic and acute disease statuses. Decades of research have shown that metabolism is not a self-

regulating network operating independently but rather heavily integrated into every cellular process and involved in organ system functions. Therefore global monitoring of metabolic processes is recommended for more comprehensive understanding of the initiation and advancement of disease. Mass spectrometry based metabolomics, in particular, demonstrates tremendous promise in delivering high throughput quantitative information on alterations in metabolism associated with disease onset/progression and response to pharmaceutical intervention. Recent advances in mass spectrometry and informatics tools have facilitated emerging in house OMICS platforms capable of translating biological output into viable therapeutic candidates and assist in stratifying patient populations. At BERG, we have implemented an industrial level high throughput metabolomics platform providing both high quality and depth of information allowing for reliable and broadest capture of the metabolome for the pre-clinical and clinical matrixes analyzed. Global metabolomics platform dedicated for theranostic and clinical studies as well as tracer metabolomics are harvested to facilitate CDx biomarkers discovery in a unique way. Highlights of the BERG's in-depth patient stratification approaches as well as biology based drugs are presented.

Keywords: Metabolomics, discovery, clinical, network, patient stratification, CDx markers.

Human Metabolomes

BERG		Gut N	licrobion	ne	
Μ	тM	μ M	nM	рМ	fM H
8500 (HMDE	3)	Endogeno	us metabolit	es	
1450 (DrugBank)			Drug	qs	
30000 (Fool	DB)	Fc	ood additives	<mark>/Phytochem</mark> i	cals
1000 (DrugE	Bank)		Drug	metabolites	
3100 (T3DB))		Тох	kins/Env. Che	micals

BERG

Metabolic Biomarkers

Disease	Metabolite					
Anemia	Folic Acid (folates)					
	Vitamin B12					
Bone Diseases	Vitamin D, 1,25 Dihydroxy					
Cardiac Markers	CyclicAMP					
	Homocysteine					
CNS Diseases	5-Hydroxy indole a cetic acid					
	Dihydroxyphenyl acetic acid					
	Homovanillic acid					
Diabetes	Free Fatty Acids (FFA)					
	Glucose					
Endocrinology	Testosterone					
	Cortisol					
Gastroenterology	Seratonin					
Infectious Diseases	N/A					
Inflammation/Immunity	eyeneed IP					
	Cortisol					
	Prostaglandin E2					
Lipid Metabolism	Cholesterol					
	TG					
Nephrology	Croatinine					
Oncology	N/A					
Thyroid Markers	rotartinyroxin (T4)					
	Liothyronine					

Inherited Metabolic Diseases

Argininemia					
Argininosuccinic Ac	id Lyase d	leficiency			
Beta ketothiolase de	eficiency				
Carnitine cycle diso	rders				
Carnitine palmitoyl t	ransferas	e 1 deficie	ncy (CPT-	1)	
Carnitine translocas	e deficien	су			
Citrullinemia					C
Fatty Acid Oxidation	defects				
Galactosemia					
Glutaric acidemia ty	pes 1 and	2			
Glutathione synthet	ase deficie	ency			
Homocystinuria					
Hypermethioninemia	3				
Hyperprolinemia					
Isovaleric acidemia					
Long chain hydroxy	l acyl CoA	dehydrog	enase def	iciency (L	CHAD)
Lysosomal Storage	Diseases				
Maple syrup urine d	isease				
Malonic aciduria					
Medium chain acyl (CoA dehyd	Irogenase	deficiency	(MCAD)	
Metabolic acidosis					
3-Methylcrotonyl Co	A carboxy	/lase defic	iency		
Methylmalonic acide	emia				
Multiple Acyl CoA de	ehydrogen	ase defici	ency		
Organic acidemias					
Ornithing corbornde	e deficie	ncy			
Phenylketonuria					
г горюню астастна	-				
Short chain acyl Co	A dehydro	genase de	ficiency (SCAD)	
Trimethylaminuria					
Tyrosinemia					H
Urea cycle defects					0 0

IE(

Phenylalanine as a Biomarker

Phenylketonuria

Human Serum

20 - 400 folds Up

Metabolomics articles in PubMed reporting on Phenylalanine alterations

Condition	Subject	Sample	Changes	Year
Hepatocellular carcinoma	Human	Serum	Up	2015
Severe Sepsis and Septic Shock	Human	Urine	Down	2015
Asthma	Human	Serum	Up	2015
Rheumatoid arthritis	Human	Serum	Up	2015
Bladder cancer	Human	Serum, urine, tumor	Up	2015
Chronic Kidney Disease	Human	Serum	Up	2015
Hepatobiliary cancer	Human	Serum	Up	2015
Depression	Human	Plasma	Down	2015
Hepatocellular carcinoma	Human	Serum	Up	2015
Physical training	Human	Urine	Up	2015
Heart failure	Human	Plasma	Alteration	2015
Renal cell cancer	Human	Urine	Up	2015
Cardiovascular event risk	Human	Plasma	Up	2015
Alzheimer's disease	Human	Plasma	Up	2014
Type-2 diabetes mellitus	Human	Plasma 🔍	Up	2015

Current Challenges

- Lack of <u>analytical validation</u> for measuring biomarkers and often a lack of <u>reliable evidence</u> about their performance
- Lack of a <u>common vocabulary and taxonomy</u> for biomarkers
- Inadequate <u>scientific information</u> on the causes, biochemical pathways, and natural histories of many diseases, making identification of disease-specific biomarkers difficult
- Lack of <u>public access</u> to existing research and information on potential biomarkers
- Lack of generally-accepted <u>evidentiary standards</u> for qualifying new biomarkers for particular contexts of use

BERG

Robert Powers: The Current State of Drug Discovery and a Potential Role for NMR Metabolomics, *J. Med. Chem.*, 2014, 57 (14), pp 5860–5870

Metabolomics Impact on Metabolic Perturbations Discovery

IECM

Metabolomics approaches to tackling MOA in preclinical animal study.

INTERNATIONAL MEETING ON METABOTROPIC GLUTAMATE RECEPTORS Taormina, Sicily-Italy September, 2014

LY3020371: In vivo characterization of a novel mGlu2/3 receptor antagonist.

J.M. Witkin, C. Overshiner, X. Li, G. Gilmour, J. Li, L. Rorick-Kehn, K. Rasmussen, B. Johnson, SN Mitchell, K.G. Phillips, K.A. Wafford, D.L. McKinzie, A. Nikolayev, V.V. Tolstikov, M-S Kuo, P.L.Ornstein, C.H.Mitch, R. Li, S.C. Smith, X-S Wang, B.A. Heinz, D. Allen, S. Swanson and J.A. Monn (USA and UK)

10 mg/kg LY3020371, I.P. 1 hour after administration

Hydroxyisocaproic acid/ nicotinamide ratio in CSF 1 hour after administration

Common pathways -GRIA2(mGlu2/3) and ADORA1 – are predicted to be activated in Hippocampus.

Ketamine has been tested in treatment-resistant bipolar disorder, major depressive disorder, and people in a suicidal crisis in emergency rooms. *Wikipedia*

ANIMAL STUDY: FGF21 DIETARY INDUCTION

Metabolism and Nonalcoholic Liver Disease. **Keystone** Symposia on **Molecular and** Cellular Biology March 22-27, 2015 Whistler, BC, Canada

In mice FGF21 is strongly induced in liver by prolonged fasting via PPAR-alpha and in turn induces the transcriptional coactivator PGC-1 α and stimulates hepatic gluconeogenesis, fatty acid oxidation, and ketogenesis. *Wiki*

Fibroblast Growth Factor 21 is an Emerging Metabolic Regulator

Fasting and ketogenic diet induce different FGF21 responses in WT and PPAR alpha KO mice

Liver samples were analyzed using global metabolomics - > 300 metabolites

Metabolite Enrichment Analysis is a way to identify biologically meaningful patterns that are signicantly enriched in metabolomic data

PC1 (24%)

Correlation analysis performed against a given pattern – FGF21

Lilly

•S-methylcysteine (SMC) is formed after exposure to monohalomethanes in rodents as well as in humans. SMC is a minor amino acid naturally excreted in human urine, a protective agent against oxidative stress and a biotransformation product of methyl bromide. -Neurotoxicology. **2004** Sep; 25(5):817-23. - Biomed. Chromatogr. **2011**; 25: 330–343

Glutathione-mercapturic pathway.

Fac1

2 Fac2

0 KD

-2

-4

KO

WT

Chow

Fast

γ-GT - Gamma-glutamyltransferase, **dipeptidase** – hepatic cysteinylglycine S-conjugate dipeptidase

BERG

Glutathione Metabolism and Its Implications for Health. J. Nutr. 2004, 134(3), 489-92

1) γ -glutamyl transpeptidase

6) dipeptidase

2) γ-glutamyl cyclotransferase

3) 5-oxoprolinase

X - Methyl

Case summary

1. A ketogenic diet dramatically increases and sustains endogenous FGF21 production in wild-type and PPARα KO mice indicating PPARα-independent regulation of FGF21.

2. A cluster of metabolites associated with FGF21 production in PPARα KO mice was identified and suggests this increase is associated with increased metabolic stress in the liver.

3. Pattern correlation and two way ANOVA analyses suggest significant changes to the transmethylation pathway and glutathione metabolism in response to acute dietary challenges.

BERG's Interrogative BiologyTM Platform

BERG models, interrogates, and analyzes disease biology at a systems level to agnostically identify actionable targets.

TECHNOLOGY: INTEGRATED PHENOME ASSESSMENT

POPULATION BASED PHENOMIC STRATIFICATION USING BERG CLINICAL TRIALS

	COM	PANY CL	INICAL	RES	EARCH	co	NTACT
CLINICAL/PENDING TRIALS							
		Clinical Pro	grams				
Therapeutics							
Oncology	Discovery	Target Validation	Pre-Clinical	IND	Phase I	Phase II	Phase III
Topical 31510: Skin Cancer							
31510-IV: Solid Tumors	>						
31510-IV: Chemotherapy Co- treatment							

This is an open label trial evaluating BPM 31510 as a single agent in patients with advanced refractory solid tumors. This is a dose-finding trial currently on-going at the following clinical sites: Weill Cornell Medical College, MD Anderson Cancer Center, and Palo Alto Medical Center.

PRE-PROCESSED PATIENT PROFILE

BERG A CLINICAL INFORMATION SYSTEM

Longitudinal Molecular and Clinical Profile

	001000010101K0110100000		
	1111010110100000000		
	1010000 10000 10000010001		
••••••••	THE CONTRACT OF A TRACT OF A TRAC		
	I REALING BEALLING BEALLING BEALLING International Control of the second		

PATIENT DASHBOARD

Responder

Non-Responder

OH

OH

IECM

BERG A CLINICAL INFORMATION SYSTEM

Longitudinal Molecular and Clinical Profile

IECM

Patient Dashboard

Companion Diagnostics

Responsive to Treatment

Refractory to Treatment

Potential markers selection

BERG A CLINICAL INFORMATION SYSTEM

PRECISON MEDICINE - PATIENT STRATIFICATION

Candidate CDx markers measured before treatment

ACKNOWLEDGEMENTS

- O The patients and families participating in BERG clinical trials
- O Investors: Carl Berg and Mitch Gray
- **O** Senior Leadership:
 - Niven Narain, Rangaprasad Sarangarajan, Michael Kiebish
- Metabolomics Team:
 - Collin Hill, Jeremy Drolet, Brian Williams, Bennett Greenwood.

