laSalle

RAMON LLULL UNIVERSITY

An FPGA Platform Proposal for real-time Acoustic Event Detection: Optimum platform implementation for audio recognition with time restrictions

Marcos Hervás and Rosa Ma Alsina-Pagès

GTM – Grup de Recerca en Tecnologies Mèdia, La Salle – Universitat Ramon Llull; mhervas@salleurl.edu, ralsina@salleurl.edu

- 1. Description of the problem
- 2. Goals of our paper are presented
- 3. Hardware platforms comparison
- 4. Hardware proposal and basic algorithm implementation
- **5.** Conclusions

1. Description of the problem

- Human activities monitoring has become a common issue
- Acoustic sensing using microphones is less intrusive than other common surveillance systems, as the use of cameras
- GTM is nowadays involved in two applications: SmartCity sensing (DYNAMAP Life LIFE ENV/IT/001254) and HomeSound (2014-SGR-0590), a home surveillance system for the elderly
- The acoustic signal processing has to be solved in a low cost hardware platform

- 1. Description of the problem
- 2. Goals of our paper are presented
- 3. Hardware platforms comparison
- 4. Hardware proposal and basic algorithm implementation
- **5.** Conclusions

2. Goals of our paper are presented

- A study of the most suitable platform for acoustic event recognition taking into account
 - commercial platforms price
 - Computational complexity of the algorithms

- First approach to signal processing algorithms adaptation for the chosen platform

- 1. Description of the problem
- 2. Goals of our paper are presented
- 3. Hardware platforms comparison
- 4. Hardware proposal and basic algorithm implementation
- **5.** Conclusions

3. Hardware platforms comparison

- The comparison of the platforms has included the following microcontroller manufacturers:

- Renesas Technology
- Freescale Semiconductor
- ST Microelectronics
- Microchip Technology
- NXP Semiconductors
- Texas Instruments
- Infineon Technologies

M. Hervás and R.M. Alsina-Pagès

ECSA 2016

3. Hardware platforms comparison

- System requirements:

- 48 kHz of sampling frequency
- an overlap of around 50% between frames
- frames of 30 ms duration

- The platform has to compute:

- the acquisition process
- other signal processing algorithms
 - Windowing, FFT, 48 FIR filters (for feature extraction), DCT, etc.
- manage the TCP/IP stack

3. Hardware platforms comparison

FFT (ASM)	24 MHz Cycle count	24 MHz Time (µs)	48 MHz Cycle count	48 MHz Time (μs)	72 MHz Cycle count	7 2 MHz Time (μs)
FFT-64	3847	160	4025	84	4764	66
FFT-256	21039	876	22176	462	26065	362
FFT-1024	100180	4174	102057	2126	127318	1768
FIR-32	3516	146.5	3525	73.4	3727	5176

- The table shows the execution time for FFT and FIR algorithm for different number of points and different system frequency for a CORTEX-M3
- The proposal in this paper is the use of a low cost FPGA and its programmability paradigm, exploiting parallelization for real time applications

- 1. Description of the problem
- 2. Goals of our paper are presented
- 3. Hardware platforms comparison
- 4. Hardware proposal and basic algorithm implementation
- **5.** Conclusions

- Basis-3 Digilentinc Platform description
 - MCB to manage auxiliary DDR memories
 - DCMs able to modify some aspects of the clock signals
 - Multiply or divide the input frequency
 - Condition a clock
 - Phase shift
 - Eliminate clock skew
 - Mirror, forward or rebuffer a clock signal
 - Block RAMs to implement two independent 18 kbits or one 36 kbits in Xilinx series 7 FPGA
 - A DSP block with pre-adder, multiplication and accumulator

Basys-3	Slices	Logic Cells	Bloc RAM	DSPs	Price
XC7A35T-1CPG236C	33280	33280	1800 kbit	90	150 \$

- Algorithm implementation stages:
 - Windowing
 - FFT
 - 48 GTCC filter banks
 - Square root
 - Audio frames 30 ms long, results in 1440 samples at 48 ksps

 Implementation of windowing proposed to insert the data to the FFT block

ECSA 2016

 Resources from Basys-3 platform used by the presented implementations

Basys-3	LUT	FF	BRAM	DSP
FFT	709	1385	4	4
48 Filter Banks	0	0	48	0
Square Root	783	0	0	0
Total	7949	24800	11	25

- 1. Description of the problem
- 2. Goals of our paper are presented
- 3. Hardware platforms comparison
- 4. Hardware proposal and basic algorithm implementation
- **5.** Conclusions

5. Conclusions

- Basys-3 is a good trade-off between cost and features for audio detection algorithm implementation
- It satisfies real-time performance for the typical required conditions
- In future work we will implement a Microblaze in the FPGA in order to control the system remotely through Ethernet and to compute easily non-intensive parts of the algorithm