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Abstract: Wearable sensor technologies are a key component in the design of applications for 
human activity recognition, in areas like healthcare, sports and safety. In this paper, we present  
an iterative learning method to classify human locomotion activities extracted from the Opportunity 
dataset by implementing a data-driven architecture. Data collected by twelve 3D acceleration 
sensors and seven inertial measurement units are de-noised using a wavelet filter, prior to the 
extraction of statistical parameters of kinematical features, such as Principal Components Analysis 
and Singular Value Decomposition of roll, pitch, yaw and the norm of the axial components. A novel 
approach is proposed to minimize the number of samples required to classify walk, stand, lie and 
sit human locomotion activities based on these features. The methodology consists in an iterative 
extraction of the best candidates for building the training dataset. The best training candidates are 
selected when the Euclidean distance between an input data and its cluster’s centroid is larger than 
the mean plus the standard deviation of all Euclidean distances between all input data and their 
corresponding clusters. The resulting datasets are then used to train an SVM multi-class classifier 
that produces the lowest prediction error. The learning method presented in this paper ensures a 
high level of robustness to variations in the quality of input data while only using a much lower 
number of training samples and therefore a much shorter training time, which is an important 
aspect given the large size of the dataset.  
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1. Introduction 

Wearable sensor technologies are gaining interest in research communities due to the use of 
significantly miniaturized electronic components, with low power consumption, which makes them 
ideal for applications in human activity recognition for both indoor and outdoor environments. These 
applications allow users to achieve a natural execution of any physical activity, while providing good 
results in multiple practical applications, such as health rehabilitation, respiratory and muscular 
activity assessment, sports and safety applications [1]. However, in practical situations, collected data 
are affected by several factors related to sensor data alignment, data losses and noise, among other 
experimental constrains, all deteriorating their quality [2]. Also, the non-ergodicity of the acquisition 
process, especially when processing signals from acceleration sensors, will result in a poor learning 
performance [3] in applications involving multi-class classification [4]. The problems become even 
more complex if the multi-class classification process is applied on high dimensionality data vectors. 
Considering these restrictions prevalent in multimodal sensor data fusion [3], which is the case in the 
study, reported in this paper, feature extraction becomes a critical component for finding the  
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multi-variable correlations that allow the classifier to improve the model precision reflected by a low 
misclassification rate. 

In this paper, we present a new method for classifying human locomotion activities (e.g., walk, 
stand, lie and sit) by implementing a data-driven architecture based on an iterative learning 
framework. The proposed solution optimizes the model performance by choosing the best training 
dataset for non-linear multi-class classification that makes use of an SVM classifier, while also 
reducing the computational load. We aim to show that by appropriately choosing our data samples 
for the training of this multi-class classifier, we can achieve close results to the current approaches in 
the literature, while using only a fraction of the data and improving significantly the computation 
time. The article is organized as follows: Section 2 presents our method. Section 3 shows relevant 
results, and Section 4 discusses the conclusions. 

2. Iterative Learning Method for Classifying Human Locomotion 

The work in this paper is based on data acquired by body–worn sensors, and extracted from the 
Opportunity dataset [5]. The body-worn sensors are twelve 3D-acceleration customized sensors [6] 
and seven inertial measurement units—IMUs (Xsens MT9). The dataset has a total of 58 dimensions 
including the time stamp. Each device senses the acceleration in the 3 perpendicular axes, recording 
the acceleration values at a sampling rate of 30 Hz. All records are labeled according to four primitive 
classes: walk, lie, sit and stand. The signal acquisition protocol is performed under a pre-established 
scenario with six experimental sessions (or runs), performed independently by four users. The 
extracted dataset contains a total of 869,387 samples, which are distributed as follows: 234,661 
samples for user 1; 225,183 samples for user 2; 216,869 samples for user 3, and 192,674 samples for 
user 4. The goal of is to extract from these data the best training samples that enable the classification 
of the locomotion activity of the users independently. 

2.1. Data Pre-Processing 

The data pre-processing phase consists of two steps. First, we proceed with the exclusion of 
values affected by data losses and random noise, issues that are very common in wireless acceleration 
sensors. In the dataset we use, roughly 30% of the data contains such values. In order to deal with the 
problem of missing data, we fused all readings produced by each sensor, for each user and each 
experiment, to work exclusively from a data-driven perspective, as explained in the following 
sections. The aim of the second step is to de-noise the raw data. 

2.1.1. Wavelet Filtering 

In order to efficiently de-noise raw data, we include a mechanism that guarantees that the 
resulting classification model is not biased due to the quality of the input data [7]. In general,  
the acceleration sensors are influenced by several noise sources, such as electrical noise induced by 
the electronics [8], or noise produced by the wireless communication processes, resulting from the 
propagation phenomenon and causing distortion in the transmitted signal. The noise present in the 
acceleration sensor measurements has commonly a flat spectrum. This means that the noise is present 
in all frequency components. This constitutes a challenge for the use of traditional filtering methods, 
which by removing sharp features, can introduce distortions in the resulting signal. Decomposition 
of the noisy signal into wavelets [9] will eliminate small coefficients, commonly associated with the 
noise, by zeroing them, while concentrating the signal in a few large-magnitude wavelet coefficients.  

2.1.2. Feature Extraction and Selection 

After filtering the raw data, we proceed with the feature extraction and selection process.  
The aim is to retrieve a set of data with high correlation, allowing us to extract the best candidates for 
the training dataset [10]. This process focuses on the extraction of kinematics features, such as roll, 
pitch, yaw (RPY), and the norm of the axial components produced by each of the body-worn sensors. 
Our first feature set is based on the signal magnitude vector (SMV). At each time instance j,  



Proceedings 2017, 1, 7 3 of 6 

 

an acceleration sensor k produces a 3D vector, consisting of acceleration values along a system of 
orthogonal axes	݆ܽ,݇ = ൫ܽܿܿݔ, ,ݕܿܿܽ ℛ3	߳	൯ݖܿܿܽ . For each sensor, we can retrieve the single magnitude 
vector	ห ܽ,ห. A second feature set is related to roll, pitch and yaw (RPY), calculated as follows:  ݈ݎ ݈, = ݊ܽݐܽ ൬ ೣඥା൰ , ℎ,ܿݐ݅ = ݊ܽݐܽ ൬ ඥೣା൰ , ,ݓܽݕ = ݊ܽݐܽ ൬ ඥೣା൰, (1) 

Finally, we build a matrix with all axial components produced by all sensors under observation: ܽܿܿ௫,௬,௭, = ൛ൣܽܿܿ௫,൧, ൣܽܿܿ௬,൧, ൣܽܿܿ௭,൧ൟ (2) 

The last matrix has ݊ × ܽ, × ݇  components, where n is the number of samples in each 
experiment for ݇  sensors in ܽ,  dimensions. To deal with the absence of some values, we use 
principal component analysis (PCA) and singular value decomposition (SVD). PCA provides  
a mechanism to reduce dimensionality, while SVD provides a convenient way to extract the most 
meaningful data. Combining these techniques, we find data dependency while removing redundancy. 
PCA and SVD ensure the preservation of the nature of the resulting data structures on each feature 
category. When applying PCA, each feature category is reduced to two principal components (Figure 
1a). Similarly, when SVD is applied, each feature category is reduced to the two first SVD dimensions, 
as shown in Equation (3). The new target function ݂,() is represented as follows:  

݂, = ݂൫ܽܿ (ܴܻܲ), ,(ܸܯܵ)ܽܿ ,(௫,௬,௭,ܿܿܽ)ܽܿ ,(ܻܴܲ)݀ݒݏ ,(ܸܯܵ)݀ݒݏ  ൯ (3)	(௫,௬,௭,ܿܿܽ)݀ݒݏ

We are therefore reducing our analysis to a function with three attributes (ܴܻܲ, ,ܸܯܵ ܽܿܿ௫,௬,௭,) and 
two mathematical methods, PCA and SVD. 

 
(a) (b) (c) 

Figure 1. (a) PCA is applied to ܽܿܿ௫,௬,௭,  (data distribution corresponds to the first and second 
principal components); (b) Classes are extracted in pairs (ݔ, (,ݔ , centroids are extracted and 
Euclidean distances are calculated according to step 6; and (c) Training candidates are produced by 
the selection algorithm. 

2.2. Learning Architecture 

Our learning framework aims to classify human activities using a single multi-class SVM 
classifier (LibSVM version 3.20 [11]). To achieve this, we must deal with two data constrains: (1) the 
large size of the experimental datasets containing in many cases overlapping class members and high 
data density; and (2) the non-ergodicity of the recorded signals demonstrated by the fact that we were 
not able to find temporal patterns in the dataset. In order to improve the classification accuracy,  
while reducing the processing time required, features	(( ଵ݂, ଶ݂), . . , ( ݂ , ݂)) produced by Equation (3) 
are grouped pairwise to cover all the possible combinations. The candidates for the training dataset 
are then determined by measuring the Euclidean distance between each class member and the 
centroids of each distribution of ( ݂ , ݂). If the resulting distance is larger than the mean plus the 
standard deviation of all resulting Euclidean distances, then the class member is considered  
a candidate for the training set. This process leads to the creation of support vectors, which generate 
the optimal separation plans to classify the remaining data with only a fraction of the total data 
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presented for each user experiment. The goal is to build a robust classification model, which will not 
be affected by the quality of the input data [12]. 

2.3. Training Data Selection 

The following procedure summarizes the process for the extraction of the training dataset  
(for any user and any experiment): 

1. Select a user.  
2. Select a user experiment.  
3. Extract two features ( ݂ , ݂) from the experiment.  
4. Extract all classes from ( ݂ , ݂).  
5. Select a pair of classes (ݔ,  ) (i.e., a one-versus-all methodology is used) and extract their,ݔ

corresponding centroids. 
6. Extract the Euclidean distance between each class member (ݔ) and the centroid of the class (ݔ). 

Store the results in a vector of distances ܴ,(݆): ܴ,(݆) = ቚቀݔ,(݆)ቁ −  ,ቚ (4)݀݅ݎݐ݊݁ܥ

where n and m are the classes of ( ݂ , ݂), ݆ is a class member and ݀݅ݎݐ݊݁ܥ,	is the opposite centroid 
with respect to the discriminating hyperplane of the class member under evaluation (Figure 1b). 
7. If the resulting Euclidean distance vector ܴ,(݆) satisfies condition (5), then the class member 

is a candidate for the training dataset. ܴ,(݆) ≥ ܴ,തതതതതത + ߪ (ܴ,)  (5) 

where ܴ݊,݉തതതതതത  and ߪ(ܴ݊,݉)  are the mean and standard deviation of the Euclidean distance vector ܴ,(݆). The candidate is stored in a vector of candidates BoC(ݔ,(݆)) (Figure 1c). 
8. Repeat steps 3 to 7 until all classes in ( ݂ , ݂) have been evaluated. 

2.4. Model Selection 

Once the best training dataset BoC(ݔ,(݆)) has been identified, we proceed with the selection of 
the best classification model using a multi-class SVM classifier with an RBF kernel. Since we have 
more than 2 classes, we follow the strategy one-versus-all. The problem of model selection is reduced 
to finding the best combination of parameters cost, c and γ extracted in a 5-fold cross validation 
process, in which the values of c and γ are chosen according to a grid of values, i.e., (2ିହ, . . , 2).  
The reason we used this grid is to compensate for the behavior of c and γ. When c is large the classifier 
presents low bias and high variance. For small values of c the classifier presents high bias and low 
variance. A similar situation is found with γ. For large values of γ the classifier presents high bias 
and low variance and for small values of γ the classifier presents low bias and high variance. The best 
model produced by the combination of c and γ in a 5-fold cross-validation will achieve the lowest 
misclassification rate. This model is then used to predict the labels on the testing dataset. Once the 
classification rate is determined, the algorithm stores the accuracy values, the features ( ݂ , ݂), c and γ 
and the size of the training sample BoC(ݔ,(݆)) and repeats the process until all combinations of ( ݂, ݂) are exhausted. 

3. Experimental Results 

The proposed process is evaluated over three experimental scenarios and the results are 
presented in Tables 1–3. We compare our method with a scenario in which the training dataset is 
randomly selected and its size corresponds to 80% of total of data of each user experiment, common 
practice when 5-fold cross-validation is performed. These last results are compared with our proposed 
method and presented in Table 4. We use two measures to validate our results, namely the prediction 
accuracy (Acc) and the size (as percentage of the total dataset) of the training dataset that is used (TS): 

Acc = Labels	correctly	predicted(size	of	userᇱs	dataset) × 100%; TS = size൫R୬,୫൯(size of userᇱs dataset) × 100%	 (6) 
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It is important to state that the values for Acc and TS depend on the size of the user dataset and 
the resulting vector ܴ,(݆)  in Equation (5). These values are changing with the number of 
measurements in each user experiment. Table 1 presents the results when using only data obtained 
from the IMU sensors, Table 2 shows the values for Acc and TS when using data obtained from the 
3D acceleration sensors and Table 3 when using data obtained from the 3D acceleration sensors and 
IMU devices in three experiments. 

Table 1. Classification performance obtained from IMU sensors. 

User 
Experiments

Experiment 1
(Acc%/TS %) 

Experiment 2 
(Acc%/TS %) 

Experiment 3
(Acc%/TS %) 

Experiment 1
(Acc%/80%) 

Experiment 2 
(Acc%/80%) 

Experiment 3
(Acc%/80%) 

User 1 80/4.47 75.36/1.19 81/3.31 83.92 74.76 80.55 
User 2 71.56/4.97 47.43/11.96 65.23/10.18 77.53 77.17 78.31 
User 3 70,64/5.70 57/7.70 73.28/0.16 71.46 69.43 75.19 
User 4 66.19/2.8 61.27/2.70 78/1.86 77.2 74.46 79.88 

Table 2. Classification performance obtained from 3D acceleration sensors. 

User 
Experiments

Experiment 1
(Acc%/TS %) 

Experiment 2 
(Acc%/TS %) 

Experiment 3
(Acc%/TS %) 

Experiment 1
(Acc%/80%) 

Experiment 2 
(Acc%/80%) 

Experiment 3
(Acc%/80%) 

User 1 82.82/3.03 79.23/11.38 83.71/9.11 83.12 79.12 80.56 
User 2 52.42/2.96 50.86/12 57.84/1.89 69.9 75 73.56 
User 3 69/13.16 67.86/0.60 76.62/3.37 72.09 65.21 77.51 
User 4 66/1.63 64/10.4 77.53/3.45 71.59 76.15 87.55 

Table 3. Classification performance obtained from IMU and 3D acceleration sensors. 

User 
Experiments

Experiment 1 
(Acc%/TS %) 

Experiment 2 
(Acc%/TS %) 

Experiment 3 
(Acc%/TS %) 

Experiment 1 
(Acc%/80%) 

Experiment 2 
(Acc%/80%) 

Experiment 3 
(Acc%/80%) 

User 1 80.62/7.15 77.21/8.3 84.77/8.17 81.11 75.92 80.85 
User 2 65.85/8.78 45.16/12.49 66.25/0.90 71.54 76.68 74.56 
User 3 58.49 /13.93 67.62/1.42 70.35/2.97 72.30  65.18 77.08
User 4 66.48/0.70 66.64/11.41 71.54/4.14 73.43  75.80 87.38

These results are compared in Table 4, that shows the average accuracy when using two training 
dataset selection strategies, one with a limited number of training samples (first three columns) and 
the other one with a large number of training samples (i.e., 80% in last three columns). One can observe 
that using on average of 7.33% of the dataset for training, the performance achieved is only about 
7.28% under the performance obtained when the classifier processes a high number of training samples. 

Table 4. Accuracy comparison. 

User (Acc/TS) (Acc/80%)
User 1 80.52/6.23 79.99
User 2 58.03/7.43 74.49
User 3 67.87/5.40 71.71
User 4 68.62/10.29 77.98

Average 68.76/7.33 76.04

The use of a smaller training set leads as well to an important decrease in the computation time. 
The average processing time per user experiment is roughly 35 min when using the strategy of 
training with 80% of the dataset, on a single processor Intel64 7 at 3 KHz, 6 Gb RAM memory. It is 
worth mentioning that the use of the iterative process leads to a significant reduction in the average 
time for processing an experiment to about 5 minutes that represents less than 15% of the time 
required when 80% of the dataset is used for training.  
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4. Conclusions 

In this paper, we proposed a novel iterative learning process to reduce the number of samples 
and subsequently the processing time for the classification of measurements from wearable sensors. 
The challenges related to the large percentage of missing data and the noise affecting the 
measurements were successfully dealt with by the use of data fusion and of a robust filtering stage 
based on wavelets. The inclusion of a mechanism for the selection of the training dataset allows us to 
work with only a fraction of the total dataset for the SVM multi-class training process.  
The minimization of the number of samples is an important contribution that allows to deal efficiently 
with large data sets as those explored in this paper. 
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