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Abstract: Robots are expected to perform complex dexterous operations in a variety of applications 
such as health and elder care, manufacturing, or high-risk environments. In this context, the most 
important task is to handle objects, the first step being the ability to recognize objects and their 
properties by touch. This paper concentrates on the issue of surface recognition by monitoring the 
interaction between a tactile probe in contact with a surface. A sliding motion is performed by a 
robot finger (i.e., kinematic chain composed of 3 motors) carrying the tactile probe on its end. The 
probe comprises a 9-DOF MEMs MARG (Magnetic, Angular Rate, and Gravity) sensor and a deep 
MEMs pressure (barometer) sensor, both embedded in a flexible compliant structure. The sensors 
are placed such that, when the tip is rubbed over a surface, the MARG unit vibrates and the deep 
pressure sensor captures the overall normal force exerted. The tactile probe collects data over seven 
synthetic shapes (profiles). The proposed method to distinguish them, in frequency and time 
domain, consists of applying multiscale principal components analysis prior to the classification 
with a multilayer neural network. The achieved classification accuracies of 85.1% to 98.9% for the 
various sensor types demonstrate the usefulness of traditional MEMs as tactile sensors embedded 
into flexible substrates. 
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1. Introduction 

Recognition of objects by touch is one of the first steps to enable robots to help humans in 
everyday activities. Many applications such as health and elder care, manufacturing, and high-risk 
environments involve tasks that require robots to handle objects that are out of their field of view or 
partially obstructed. To manipulate objects efficiently, robots have first to identify the objects based 
on their properties. Object recognition by touch can be divided in recognition through static or 
dynamic touch. In static touch recognition, the tactile sensing apparatus establishes contact with an 
object and collects tactile data while the object is in touch with the probe. In the recognition through 
dynamic touch, the tactile apparatus gathers data while the sensors slide over the object’s surface. 

This paper focuses on the issue of tactile profile recognition through a sliding motion performed 
by a robot finger composed of 3 motors and equipped with a tactile probe. The tactile probe comprises 
a 9-DOF MEMs MARG (Magnetic, Angular Rate, and Gravity) system and a deep MEMs pressure 
(barometer) sensor, both embedded in a compliant structure. This setup collects data over seven 3D 
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printed profiles. The data collected is then subject to a wavelet decomposition stage, principal 
component analysis and classification using a multilayer perceptron neural network. 

The following section discusses relevant work in the literature. The material and methods 
employed in the experimental setup are detailed in Section 3. This is followed by a presentation of 
our approach for the problem of shape discrimination from multi-sensory data collected during a 
sliding motion of a robot finger in Section 4. The experimental results are presented in Section 5. 
Finally, insights on future work and final considerations are described in Section 6.  

2. Literature Review 

Artificial tactile systems require strategies to interpret information collected while interacting 
with real-world objects, and should choose which type of movements to execute such that the chances 
of success in a given task are increased. Such systems also need to select or prioritize the information 
coming from various sensors. 

The design of tactile sensors and the interpretation of the data gathered by such sensors is the 
subject of vast literature [1]. Several researchers have built artificial sensing fingers in order to 
investigate their performance during probing and exploration tasks. A biomimetic fingertip that can 
detect force and vibration is developed by Chathuranga et al. [2,3]. The tip, comprised of commercial 
accelerometers and force sensors, is attached to the end of a robotic finger and performs sliding 
exploratory movements while touching six fabrics and one metal in one experiment, and seven wood 
samples in another experiment. The goal is to evaluate the ability of the system to discriminate fabrics 
and wood based on surface textures. The signals recuperated from the accelerometers are recorded 
and employed to calculate three features, based on which an artificial neural network classifies the 
samples. The discrimination success rate were increased by the use of vectors from the Fourier 
coefficients of the signals and the convolution of these signals. 

Another example of application of inertial information in a tactile context is found in [4]. A tactile 
probe in form of a small metallic rod with a single-axis accelerometer attached to its tip is employed 
to classify surfaces based on their mean, variance, and higher order moments using a neural network. 
A training data set is collected over ten different indoor and outdoor surfaces, and the neural network 
achieves an average classification rate of 89.9–94.6%. 

This paper presents the use of conventional MEMs sensors embedded in a flexible compliant 
substrate in the context of surface recognition. A 9-DOF MEMs MARG (Magnetic, Angular Rate, and 
Gravity) module and a MEMs pressure (barometer) sensor are positioned so that when the tip is 
rubbed over a surface, the MARG unit vibrates and the deep pressure sensor captures the overall 
normal force exerted. A solution is then proposed to classify surface profiles based on the data 
collected by these sensors. 

3. Experimental Setup 

The experimental setup used for experimentation is illustrated in Figure 1. The finger prototype 
used to perform the sliding motions is shown in Figure 1a. It contains 3 Dynamixel AX-12A robot 
actuators labeled M1 (bottom), M2 (middle) and M3 (top). The MARG system, embedded in the 
flexible substrate, is illustrated in Figure 1b. The 9-DOF MARG system used in the experimentation 
is the LSM9DS0 from STMicroelectronics©, composed of a triple-axis accelerometer, a triple-axis 
gyroscope, and a triple-axis magnetometer. The pressure sensor (MPL115A2 from Freescale 
Semiconductor©) seats on the bottom of the black 3D printed collar that holds the compliant structure. 
The flexible rubber from the compliant structure is made of VytaFlex© Shore 20A. The microcontroller 
serving as an interface between the computer that collects and analyzes data and the sensors is an 
MK20DX256VLH7 Cortex-M4 at 72 MHz. It is connected to the sensors through a two-wire interface 
(TWI) at 400 KHz. The microcontroller connects to the computer through an USB Serial interface. 



Proceedings 2017, 1, 27 3 of 6 

 

(a) 

 
(b) 

 
(c) 

Figure 1. Experimental setup: (a) Robot finger composed of 3 motors: M1 is the “bottom” motor; M2 
is the “middle” motor; and M3 is the “top” motor. The microcontroller is attached on top of Motors 
M1 and M2. (b) Front view of the tactile probe: the MARG system is embedded under the red circle; 
the pressure sensor is under the yellow overlay in the black 3D printed collar. (c) Side view of the 
tactile probe.  

The ABS 3D-printed shapes are fixed in front of the robotic finger that establishes contact and 
slides the tactile tip over them. Shapes 1 and 2 can be seen in Figure 2a, while the seven profiles used 
for testing are shown in Figure 2b. 

 

 
 
 
 
 
 
 

(a) (b)

Figure 2. 3D printed shapes: (a) Shape 2 on the top and shape 1 on the bottom; (b) List of shapes from 
shape 1 on the top to shape 7 on the bottom. 

The data acquisition software is developed using the Robotic Operating System (ROS). A 
standard recorded movement is executed over each of the shapes and the data representing 
acceleration, angular velocity, magnetic field direction, and intensities is saved in a database. The 
latter contains 100 samples for each shape, 700 samples in total. From these, 175 samples (or 25 for 
each class) were randomly chosen for training, in order to accommodate tip abrasion, temperature 
variance, and other possible outliers. Over the time, the tip could become worn and the temperature 
due to friction could affect the collected data. 

The graphs in Figure 3 show for example the normalized pressure data for each shape. The 
vertical axes represents the pressure level (Figure 3h), the horizontal axis the discrete time, varying 
for 0 to 3800 and the number of sample varying from 0 to 100 is shown over the depth dimension. 
Figure 3d is presented under a slightly different viewpoint to emphasize the number of samples 
collected. 
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Figure 3. (a–g) Normalized pressure samples collected over the shapes 1 to 7; and (h) meaning of axes 
for the preceding plots. 

4. Proposed Approach for Surface Profile Classification 

The tactile tip is slid against seven synthetic profiles and the data collected passes by three stages 
to discriminate the surfaces: (a) wavelet decomposition; (b) principal component analysis and;  
(c) classification by a multilayer perceptron (MLP) neural network. 

Initially, the signals of each axis collected by the MARG system and barometer are subjected to 
a Discrete Wavelet Transform (DWT) decomposition [5] in order to reduce the noise. The DWT 
decomposition consists on the simultaneous filtering of the signals by a low-pass filter, to generate 
the approximation coefficients, cA1, and by a high-pass to produce the detail coefficients, cD1. The 
same operation is iteratively applied to the previous approximation signal producing new levels of 
approximation cAi and detail cDi. In this paper the low- and high-pass filters applied to the sensors 
signals are based on the fifth order of Symlets wavelet (sym5) and the decomposition level is set to 5. 

The data resulting from the wavelet decomposition is then subject to principal component 
analysis (PCA). PCA [6] is a multivariate method of analysis widely applied on multidimensional 
data sets for dimensionality reduction. This approach reduces the number of variables in a dataset 
retaining as much as possible of its variances. PCA achieves the retention of variance by projecting 
the original correlated variables into a new set of uncorrelated variables. This reduction is carried out 
by taking a dataset consisting of p variables X1...Xp and finding the combinations of these to produce 
uncorrelated orthogonal principal components (PCs) PC1...PCp. There are many ways to find PCs; 
according to the eigenvalue decomposition, PCs are eigenvectors basis for transformation from data 
space to feature space. The eigenvalues related to these eigenvectors are a measure of each PC 
representativeness. Organizing the eigenvalues and eigenvectors enables the selection of the most 
important principal components. The projection of the original data onto a subset of PCs reduces the 
dataset dimensionality maintaining the variance proportional to the eigenvalues of the number of 
PCs used. In this paper, original data of each sensor is reduced to the number of components 
corresponding to 90% of the total variance. 

After PCA is performed on the wavelet decomposition data, we apply a multilayer perceptron 
neural network to classify the signals into their corresponding profiles. The feature vectors resulting 
from the PCA are the input to a two layer feed forward neural network with ten nodes in the hidden 
layer, and seven neurons in the output layer, the latter corresponding to the number of shapes. The 
activation functions of all neurons are hyperbolic tangents. The MLP is trained using the scaled 
conjugate gradient backpropagation method [7]. 
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5. Experimental Results 

The results of the classification for the data of the 5th wavelet approximation level of each sensor 
axis are shown in Table 1. Each DOF of the MARG sensor is classified individually. The accelerometer 
group obtains a classification accuracy between 85.1 and 92.6%. The accuracy when considering the 
gyroscope group is between 93.3 and 98.9%. When considering the magnetic field variations along 
the trajectory, the results range is 86.9–91.4%. The pressure profile measured by the barometer yields 
an accuracy of 98.9%. 

The results from the acceleration suggest that the z-axis is the least aligned of the three. Because 
the angular velocity sensor is sensitive to shock/vibration even when the direction of the event is not 
aligned with its axis, it obtains high accuracy rates in all axis. The low variations of the magnetic field 
lead to classification rates not as high as those obtained by the inertial sensors. The classification using 
the data measured by the barometer achieved one of the highest accuracy rates due to the variation 
of pressure over time and discontinuity of the contact between tactile tip and shapes while the 
movement was performed. Most of the classification errors for the inertial sensors happened between 
shapes 1 and 2 due to their similarity, as shown in Figure 2b and in the confusion table in Figure 4b. 
This is not the case when the sensor considered is the barometer, as shown in Figure 4a where the 
misclassification affects mainly shape 5. 

Table 1. Classification results. 

Sensor Accuracy (%) 
Accelerometer X 92 
Accelerometer Y 92.6 
Accelerometer Z 85.1 

Gyroscope X 98.3 
Gyroscope Y 93.3 
Gyroscope Z 98.9 

Magnetometer X 88 
Magnetometer Y 86.9 
Magnetometer Z 91.4 

Barometer 98.9 

 

(a) (b) 

Figure 4. Confusion tables for: (a) barometer, showing the misclassification of shape 5 as shape 4;  
(b) accelerometer on x-axis, showing the misclassification between shapes 1 and 2. 
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6. Conclusions  

This paper presents the classification of 7 synthetic shapes based on tactile data from a barometer 
and a MARG system embedded in a flexible robotic fingertip. The classification task consisted on a 
3-DOF robotic finger sliding its tactile-enabled tip over a set of 7 synthetic shapes and collecting data 
of accelerations, angular velocities, magnetic field variations and pressure measures inside the 
flexible material. The measurements were subject to wavelet decomposition and the 5th level 
approximation had its dimensionality reduced to 10% before the classification by an MLP neural 
network. The future work will concentrate on the evaluation of the proposed approach over a larger 
dataset, including fabrics and plastics for texture classification and on the means by which different 
wavelet decomposition levels can be employed to discriminate fine textures and shapes. 
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