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Abstract: Sensors networks for the health monitoring of structural systems ought to be designed to 
render both accurate estimations of the relevant mechanical parameters and an affordable 
experimental setup. Therefore, the number, type and location of the sensors have to be chosen so 
that the uncertainties related to the estimated health are minimized. Several deterministic methods 
based on the sensitivity of measures with respect to the parameters to be tuned are widely used. 
Despite their low computational cost, these methods do not take into account the uncertainties 
related to the measurement process. In former studies, a method based on the maximization of the 
information associated with the available measurements has been proposed and the use of 
approximate solutions has been extensively discussed. Here we propose a robust numerical 
procedure to solve the optimization problem: in order to reduce the computational cost of the 
overall procedure, Polynomial Chaos Expansion and a stochastic optimization method are 
employed. The method is applied to a flexible plate. First of all, we investigate how the information 
changes with the number of sensors; then we analyze the effect of choosing different types of sensors 
(with their relevant accuracy) on the information provided by the structural health monitoring system. 
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1. Introduction 

The main goal of Structural Health Monitoring (SHM) is to obtain information on the condition 
of existing structures that could be subjected to damages over time and therefore make decisions on 
the basis of which suitable actions should be taken, e.g., repair, substitution or maintenance. Any 
SHM procedure can be conceptually divided into three stages: 

- choice and design of the sensor network, in terms of number, type and location of sensors to be 
deployed; 

- collection and storage of data from the sensor network; 
- estimation of the mechanical parameters through an appropriate mathematical method. 

In this paper we focus on the first aspect, i.e., how to design the SHM system in order to 
maximize its usefulness and therefore minimize the uncertainty of the parameters estimation. 

Several methods for the optimal placement of sensors have been proposed in the literature: for 
a thorough overview of the most commonly adopted methods the interested reader may refer to [1–3]. 
These methods are based on the maximization of the sensitivity of the measured quantity with respect 
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to the mechanical parameters to be estimated; therefore the sensor accuracy cannot be taken into 
account in the optimization statement. 

In this paper we present a Bayesian framework for quantifying the benefit of a SHM system, 
motivated by the work of Huan and Marzouk [4], and effectuating an optimal design in terms of type, 
number and position of the sensors. Moreover, having decided the type and the number of sensors it 
is possible to find their optimal spatial configuration. Different experimental setups are compared in 
order to select the one that guarantees the maximal increase in the information conveyed by the prior 
and posterior (after measurement) distribution of the parameters. In order to compute the 
optimization function, a Monte Carlo (MC) approach is exploited. For ensuring computational 
efficiency, the Finite Element (FEM) model used to relate the input (mechanical parameters) to the 
outputs (measurements) is replaced by a surrogate model, delivered via Polynomial Chaos 
Expansion (PCE). Lastly, since the optimization function may be characterized by local maxima, a 
stochastic optimization method, namely the Covariance Matrix Adaptation-Evolution Strategy 
(CMA-ES), has been used. 

The method is applied to a benchmark case: the optimal location of sensors on a flexible plate is 
obtained. Moreover, we show how the information gain changes with respect to the measurement 
noise and the number of sensors. 

2. Method 

The random variables defining the problem are: 

࢟ - ∈ ℝ௡࢟ is the vector gathering the measured data, with ݊࢟ denoting the number of sensors 
included in the SHM system; 

ࣂ - ∈ ℝ௡ࣂ  is the vector of mechanical parameters to be estimated through a Bayesian 
approach, with ݊ࣂ defining the number of parameters to be estimated. 

Let us define the sensors network configuration through the vector ࢊ ∈ ℝ௡ࢊ, either in terms of 
spatial coordinates or node labels of the FEM model. 

According to [5], the optimal design ࢊ∗ of an experiment for the Bayesian inference of ࣂ is: 

find ࢊ∗ = arg	maxࢊ∈ऎ න න ,ࢊ)ܷ ,࢟ ,ࣂ)݌(ࣂ णࢨ࢟݀ࣂ݀(ࢊ|࢟  (1) ण and ࢨ are respectively the supports of (ࢊ|࢟)݌ and (ࢊ|ࣂ)݌, while ऎ is the space of all possible 
vectors ࢊ. As suggested in [6], the most used utility function ܷ(ࢊ, ,࢟ (ࣂ  is the Kullbach-Leibler 
divergence, i.e., the increase in Shannon information between the prior probability distribution and 
the posterior probability distribution: ܷ(ࢊ, ,࢟ (ࣂ = ln ቈ࢟|ࣂ)݌, (ࣂ)݌(ࢊ ቉ (2) 

In other words, the KL divergence measures the increase in information due to the data acquired 
from the sensors. In [7], the Shannon information is computed by asymptotic approximation. The 
advantage of this approach is that it enables the computation of the optimization function in a closed 
form, while the disadvantage lies in the fact that the designer has to place a guess on ࣂ, rendering 
the solution valid for problems with small uncertainty. To the contrary, the approach proposed in [4] 
is robust with respect to ࣂ, since it only necessitates an initial guess on the prior distribution (ࣂ)݌. If 
the designer has no prior information on the distribution of the mechanical parameters, a uniform 
distribution may be chosen. 

Following [4], Equation (1) can be handled through a MC approximation as follows: 

find ࢊ∗ = arg	maxࢊ∈ऎ 1ܰ௢௨௧෍ ቊlnሾ࢟)݌௜|ࣂ௜, ሿ(ࢊ − ln ቈ 1ܰ௜௡෍ ,௝ࣂ|௜࢟)݌ ே೔೙௝ୀଵ(ࢊ ቉ቋ	ே೚ೠ೟௜ୀଵ  (3) 

ܰ௢௨௧ and ܰ௜௡ are the number of samples to be drawn. 
In order to compute the likelihood function ࣂ|࢟)݌,  :a forward model is required ,(ࢊ



Proceedings 2017, 1, 41 3 of 6 

 

࢟ = ,ࣂ)ࡳ (ࢊ +  (4) ࢿ

where ࢿ represents the modelling and measurement error. The measurement error is assumed as a 
zero-mean Gaussian noise, with the standard deviation depending on the sensor type. 

As shown in [8] for quasi-static loading conditions, ࢟ represents the displacements or rotations 
measured at the sensors locations. The forward model is therefore: ࡳிா(ࣂ, (ࢊ =  (5) ࡲ(ࣂ)૚ିࡷ(ࢊ)ࡸ

where (ࢊ)ࡸ ∈ ℝ௡ೞ×௡೏೚೑ is a Boolean matrix that selects only the degrees of freedom (DOFs) actually 
observed by the deployed sensors; (ࣂ)ࡷ ∈ ℝ௡೏೚೑×௡೏೚೑ is the stiffness matrix; ࡲ ∈ ℝ௡೏೚೑ is the load 
vector; ݊௦ is the number of sensors to be deployed and ݊ௗ௢௙ is the total number of DOFs of the 
system. 

The likelihood function is computed as:  ࢟)݌௜หࣂ௝, (ࢊ = ࢿ݌ ቀ࢟௜ − ,௝ࣂ)ࡳ  ቁ (6)(ࢊ

where ࢿ݌~ࣨ(૙, (ࢿࢳ  is the measurement error probability distribution ( ࢿࢳ ∈ ℝ௡ೞ × ℝ௡ೞ  is the 
covariance matrix). 

Since the evaluation of the optimization function in Equation (3) is characterized by a high 
computational cost, the forward model in Equation (5) is replaced by a surrogate model, based on 
Polynomial Chaos Expansion (PCE). A set of ܰ௉஼ா  joint input samples ሾ்ࣂ	்ࢊሿ  is respectively 
drawn from (ࣂ)݌ and ࣯(ऎ), the output is computed through the FEM model. The surrogate model 
is built using the input and output set of samples, according to [9]. 

As the MC method has been utilized, the resulting optimization function will be noisy and a 
standard optimization method may fail due to the presence of local maxima. To overcome the 
problem, the CMA-ES [10] method is herein exploited. The PCE model is used for each iteration of 
the optimization procedure to compute the likelihood function in Equation (6). 

3. Results 

The method is now demonstrated on a simple benchmark problem. A simply supported flexible 
plate is subjected to a quasi-static load applied at the center (Figure 1b). It is assumed that the goal is 
to estimate the Young modulus of the four zones in which the structure is subdivided (Figure 1a) via 
use of sparse (sensor) measurements. Out-of-plane deflections are assumed as the available 
measurements and obtained via a numerical model built in a commercial FEM code (SIMULIA 
Abaqus FEA 6.13). 

 
(a) (b)

Figure 1. Benchmark case: (a) View from above, zones numbering; (b) Load and boundary condition. 

In what follows, the number of samples of the MC approximation is set as ܰ௢௨௧ = ܰ௜௡ = 5 · 10ଷ 
and the number of samples drawn to compute the PCE surrogate is ܰ௉஼ா = 5 · 10ଷ. Figure 2 displays 
the optimal configuration of 4 sensors over the plate. Each sensor is depicted with a different color; 
10 runs of the algorithm have been performed in order to check the stability of the results. For 
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,ሾ0࣯~(ࣂ)݌  ࢟ ሿ (Figure 2a), the PCE model is not able to capture the long tail in the distribution ofܧ
due to the singularity condition ܧ = 0	MPa. On the other hand, a prior distribution (ࣂ)݌~࣯ ቂଶாଷ ,  ,ቃܧ
with a lower bound far from the value ܧ = 0	MPa,  yields more stable results (Figure 2b).  
As expected, the optimal configuration is symmetric. 

 
(a) (b)

Figure 2. Optimal position of ݊௦ = 4 sensors, results of 10 algorithm runs. (a) (ࣂ)݌~࣯ሾ0, ࣯~(ࣂ)݌ ሿ; (b)ܧ ቂଶ	ாଷ ,  .ቃܧ
Let us consider the effect of sensor accuracy. For plotting the objective function across a range 

of possible design configurations ࢊ, we consider the simplest scenario of a single sensor ݊௦ = 1. In 
this case, the contour of the expected information gain may be plotted for each point of the plate. In 
Figure 3, we show that by decreasing the accuracy of the sensor, i.e., reducing the standard deviation ߪ  of the measurement error, the objective function becomes more scattered, even if the optimal 
position of the sensor remains unchanged. Moreover, we can point out that the information gain 
obtained for the optimal configuration increases as the accuracy of the sensor increases. 

 
(a) (b) (c) 

Figure 3. Contour of the objective function with one sensor for each possible location on the plate with 
different standard deviations of the measurement noise: (a) ߪ = 10ିଷ	m ; (b) ߪ = 10ିସ  m;  
(c) ߪ = 10ିହ m. 

In Figure 4 the contour plot of the information gain as a function of the number of sensors and 
the standard deviation of the measurement error is plotted. As naturally expected, the information 
increases for adoption of a larger number of sensors; on the other hand, for a certain number of 
sensors, the information gets higher as the accuracy is increased. The black lines represent the iso-
information lines. This approch can be applied to any kind of structure that has to be investigated 
though a SHM system and it allows to compare different design solutions of the sensor network. In 
this case, since the plate is a very simple structure, with high spatial correlation, the number of sensors 
deployed does not affect so much the information. 
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Figure 4. Contour of the objective function with one sensor for different standard deviations and 
number of sensors. 

4. Conclusions 

In the present paper a new method for the optimal placement of sensors for SHM applications 
has been presented. 

The optimal spatial configuration of the sensor network is obtained by maximizing the expected 
gain in Shannon information between the prior and the posterior distribution of the parameters to be 
estimated. In order to compute the optimization function, a MC approximation and PCE surrogate 
model have been exploited. 

The framework has been applied to a flexible simply supported plate: it has been shown that the 
choice of the prior distribution can lead to unstable solutions. The effect of the number of sensors and 
the measurement noise has been investigated. The information gain respectively increases as more 
accurate and more sensors are employed. The framework can be applied to design a SHM system, in 
terms of number, type and configuration of sensors as it allows to quantify the information delivered 
by the sensor network. Thus, different experimental designs can be compared in terms of both 
information and cost. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

SHM Structural Health Monitoring 
FEM Finite Element Method 
MC Monte Carlo 
PCE Polynomial Chaos Expansion 
CMA-ES Covariance Matrix Adaptation Evolutionary Strategy 
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