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Structural Health Monitoring can be conceptually divided in three stages: 

in our work, we will focus on the design of the sensor network



Motivation

Identifiability

Estimates 

Uncertainty
SHM system

cost

# sensors

measurement error

Optimal 

SHM system 

design

co
n

fig
u

ratio
n

The usefulness of the sensor network depends on the 

number, type and location of the sensors. Therefore, 

we need a method to quantify the information obtained

by the acquisition system.



Optimal sensor placement: deterministic methods
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M. Meo, G. Zumpano, (2005),  M. Bruggi, S. Mariani, (2013), Leyder, C., Ntertimanis, V., Chatzi, E., Frangi, A. (2015).

Sensitivity to damage

The existing approaches does not take into account the measurement

noise, i.e. the sensors accuracy.



Optimal sensor placement: Bayesian framework

X. Huan, Y. M. Marzouk, (2013). 

Expected gain in Shannon information
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Monte Carlo sampling

Prior:   𝜽~𝑝 𝜽
Likelihood:    𝒚~𝑝(𝒚|𝜽, 𝒅)
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In a Bayesian sense, the optimal spatial configuration 𝒅∗ of the sensor

network can be found by maximizing the Shannon information gain. In 

order to compute it, we use a Monte Carlo approximation.



Model evaluation

• Evaluation of the likelihood

𝑝 𝒚𝑖 𝜽𝑗 , 𝒅 = 𝑝𝛜 𝒚𝑖 − 𝑮 𝜽𝑗 , 𝒅
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• Forward model

𝒚 = 𝑮 𝜽, 𝒅 + 𝛜

Measurement noise

The measurements are related to the mechanical parameters to be estimated

through a FEM-based forward model. The sensor accuracy is taken into

account through a fictitious measurement noise.



Optimization

𝜽𝑖~𝑝 𝜽 , 𝒅𝑖~𝒰 𝓓
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• Surrogate model: polynomial chaos expansion

• Optimization: Covariance Matrix Adaptation Evolution Strategy

(CMA-ES)

1.  𝒅𝑖~𝒎+ 𝜎𝒩𝑖 𝟎, 𝑪 𝒎 ∈ ℝ𝑛𝒅 , 𝑪 ∈ ℝ𝑛𝒅×𝑛𝒅

2. 𝒎 and 𝑪 are updated through cumulation

3. Check the tolerance on 𝑈 𝒅

N. Hansen, S.D. Müller, P. Koumoutsakos, (2003).

In order to reduce the computational cost of the forward model, a cheaper

surrogate model is built.



Bayesian OSP framework

Sample input variables

𝜽𝑖~𝑝 𝜽 , 𝒅𝑖~𝒰 𝓓

𝑿𝑖= 𝜽𝑖
𝑇 𝒅𝑖

𝑇

System response

𝑮𝐹𝐸 𝜽𝑖 , 𝒅𝑖

PCE surrogate

𝑮𝐹𝐸 𝜽𝑖 , 𝒅𝑖 ≅ 𝑮𝑃𝐶𝐸 𝜽𝑖 , 𝒅𝑖

Maximizing information

Sample design variable

𝒅𝑙

MC approximation

𝑈(𝒅𝑙)

Update 𝒅𝑙→ 𝒅𝑙+1 (CMA-ES)

Check tolerance on  𝑈 𝒅𝑙 − 𝑈 𝒅𝑙+1

Optimal configuration 𝒅∗

Training surrogate model



Application: simply supported plate

10x10 mesh: 726 d.o.f.

Displacement measurements

4 zones: 𝜽 = 𝐸1, 𝐸2, 𝐸3, 𝐸4



Application: simply supported plate

Choice of prior distribution 𝑝 𝜽

𝑝 𝜽 ~𝒰 0, 𝐸 𝑝 𝜽 ~𝒰
2 𝐸

3
, 𝐸

𝑁𝑠: # sensors

𝑁𝑃𝐶𝐸: # PCE samples

𝑝: PCE polynomial degree

𝑁𝑀𝐶: # MC samples

𝜽 = 𝐸1 𝐸2 𝐸3 𝐸4

𝑁𝑠 = 4,𝑁𝑃𝐶𝐸 = 104, 
𝑝 = 10, 𝑁𝑀𝐶 = 5 · 103

Optimal position of 𝑛𝑠 = 4 sensors, results of 10 algorithm runs



Application: simply supported plate

Effect of σ𝛜
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σ𝜖 = 10−3 m σ𝜖 = 10−4 m σ𝜖 = 10−5 m

𝑁𝑠: # sensors

𝑁𝑃𝐶𝐸: # PCE samples

𝑝: PCE polynomial degree

𝑁𝑀𝐶: # MC samples

Contour of the objective function with one sensor for each possible location 

on the plate with different standard deviations of the measurement noise.



Application: simply supported plate

Effect of σ𝛜 and number of sensors

𝜖~𝒩 0, 𝜎𝜖
2

𝜽 = 𝐸2
𝑁𝑃𝐶𝐸 = 104, 
𝑝 = 10, 𝑁𝑀𝐶 = 5 · 103

𝑁𝑠: # sensors

𝑁𝑃𝐶𝐸: # PCE samples

𝑝: PCE polynomial degree

𝑁𝑀𝐶: # MC samples

Contour of the objective function with one sensor for different standard 

deviations and number of sensors.



Conclusions

• Optimal sensor placement and SHM system design

• Take into account:

- Measurements uncertainties

- Number of sensors

• Maximization of expected information gain between prior and 

posterior

• Use of surrogate model (PCE) for MC approximation and stochastic 

optimization (CMA-ES) methods for computational speed-up

• Future developments: larger number of sensors, larger number of 

parameters, application to complex cases

Bayesian optimal experimental design
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