

Industrial Agents and Distributed Agent-based Learning

Stefan Bosse

University of Bremen

Department of Mathematics & Computer Science,

ISIS Scientific Centre for Sensorial Materials

Bremen, Germany

Overview

- A. From passive Sensors to Smart Sensor Nodes
- B. The interdisciplinary approach: The design of Sensorial Materials
- C. Smart Sensor and Mobile Networks: Metrics, Features, Capabilities,
 Challenges
- D. The Internet-of-Things and Sensor Networks
- E. Distributed Computing, Big Data Processing, and Clouds From the "Internet of Things" to the "Sensor Internet"
- F. Architectures and Models for Distributed Computing: The Mobile Agent, Multi-Agent and Self-organizing Systems
- G. Use Cases: Structural Load Monitoring Distributed Earthquake Monitoring with Ubiquitous Devices and Agents Cloud Manufacturing

Overview (cont.)

The Future of Ubiquitous and Pervasive Computing

A. From passive Sensors to Smart Sensor Nodes

A. The Sensing Process

» Broad diversity of Sensors and Sensor Information for Processing [kind, size, dimension]

[McGrath et al., ST, 2014]

A. Sensor Integration - Progress in Density and Operation

» In the past decades: From passive to Smart Sensors with ICT

A. Sensor Data Processing: Functional Flow

» Functional representation of software components in a Sensor Network

[McGrath et al., ST, 2014]

A. Computational Power and Complexity

- » Traditionally software is executed on computers with high computational power and memory capacity.
- » Approximation: (Computing Power \times Storage Cap.) \sim Size

[Left: Warneke et al., Smart dust: Communicating with a cubic-millimetre computer, Computer, 2001]

A. Algorithmic Scaling

- » Common algorithms used in Sensor Networks and sensing applications are characterized by their
 - » high data dependency,
 - » high algorithmic complexity, and
 - » restricted distribution capabilities.

Integration of computing in technical structures or devices equipped with embedded systems requires:

Down-scaling of algorithms and methodologies towards distributed processing networks with low-resource platforms.

A. Smart Sensor Node

B. The interdisciplinary Approach: The Design of Sensorial Materials

B. Material-integrated Sensorial Systems

- » Material-integrated Sensing
- » Material-integrated Sensor Networks
- » Interdisciplinary Design Approach
- » Broad diversity of Applications
- » Improvement of Quality-of-Service
- » Improvement and Extension of Capabilities
- » Improvement of Robustness

B. Sensorial Materials

» Sensorial Materials are material-integrated Sensor Networks embedded in technical structures

[Bosse, DOI:10.1109/JSEN.2014.2301938, 2014]

B. Sensorial Materials: Smart Dust

Autonomous Sensing, Computing, and Communication System Unit

New Microsystem and Microfabrication technologies enable the integration of Sensors, AD Conversion, Digital Signal Processing, Energy Harvesting, and Communication in the mm³ scale!

[Warneke et al., Smart dust: Communicating with a cubic-millimetre computer, Computer, 2001]

B. Sensorial Materials: Enabling Technologies

- » Chip-on-Wire and Foil-to-Foil processes are promising enabling technologies for Smart Sensorial Materials
- » One- or two dimensional network topologies

B. Sensorial Materials: Enabling Technologies (cont.)

- » Print technologies can be used to print electronics, sensors, energy storage, displays, and interconnect structures on free form shapes!
- » But comparison of printed and conventional semiconductor processes shows currently still significant differences

[Left: http://storify.com/GotJenn/printed-electronics-1]

C. Smart Sensor and Mobile Networks

C. Sensor Networks: Terminology and Features

Nodes, Devices, Processing, Data, Communication, Messaging, Storage

» Sensor Networks are composed of interacting autonomous nodes

C. Sensor Networks and Integration: Challenges

- » Power Supply and Power Sources
- » Communication Technologies
- » Dynamic Network Structures
- » Autonomous Node and Network Behaviour- Self-Organization
- » Real-time capabilities
- » Reliability: Dealing with Failure/Loss {Sensor, Node, Link, Msg., Network}
- » Security, Privacy, Data Ownership
- » Durability Long term operation
- » Environmental and Bio-Human Compatibility!

C. Sensor Networks and Communication Technologies

- » Scale offered by Wireless Communication Technologies: Meter Range
- » Scale required by Material-integrated Systems: Millimetre Range

[McGrath et al.,

ST, 2014]

C. Mobile Networks

- » Sensor Clouds, Pervasive and Ubiquitous Computing pose a shift from static network to dynamic mobile computing
- » Key Features:
 - » Adaptability
 - » Ad-hoc Connectivity
 - » Hardware Abstraction Layer (HAL)

Constraints of Mobile Computing Environments:

Resources Mobile devices are more resource-poor than their static counterparts

Reliability Mobile devices are less secure and reliable

Connectivity Mobile connectivity can be highly variable

(ad-hoc, bandwidth, latency, reliability)

Identification Mobile devices support ad-hoc connectivity with random identities

D. The Internet of Things and Sensor Networks

D. The Internet-of-Things

- » The Internet-of-Things connects Sensor/Actor Networks to the Internet
- » Distributed Service, Computing, and Storage Architecture → Clouds
- » Collection of Things: Consumer Goods, Industrial Devices, Machines, Sensors, Sensorial Materials, Smart Dust, ..

D. Wide Area Wireless Sensor Networks

» Large Scale Monitoring of bridges and buildings, Load/Health Monitoring of large structures (Wings), Earthquake Monitoring

D. Smart Health Application-Human Body Sensor Networks

[McGrath et al., ST, 2014]

D. Wireless Body Area Network Application

[McGrath et al., ST, 2014]

E. Distributed Computing, Big Data, and Clouds

E. Real-time Big Data

» Big (Sensor) Data:

- » Large amount of data which is stored distributed
- » Data Mining is used to extract condensed information from data
- » Database model is used for structuring, storing, and retrieving data

» Streaming Big (Sensor) Data

- » Input: Sequential stream of data
- » Output: Processing of input stream results in an output stream giving (realtime) answers on input data
- » Stream-based Processing = continuously analyse and process massive data volumes

» Real-time Big (Sensor) Data Processing

» React in real-time = in a bounded time interval to each and every new record

E. Big Data Processing - Traditional

Traditional Process and Store architectures

- » Have poorly integrated operational platforms;
- » Perform semi-distributed Processing with Service-orientated Archit. (SOA).

E. Big Data Processing - Real-time Data Streaming

Streaming of massive volumes of data in real-time with real-time Analysis

E. Big Data Processing - Monitoring

Monitoring: Real-time alerts and visibility with continuously updated streaming results

E. Integration of Sensor Networks in Big Data Processing?

Required: Down-scaling of algorithms and massive distributed computing

E. Distributed Computing in Computer Networks

» Distributed computing in computer networks requires:
Input Data Distribution → Synchronization → Data Exchange → Processing → Output Data (Information) Collection

E. Distributed Computing in Sensor Networks

- » Sensor Networks generate the input data locally at node level
 - » Commonly negotiation between data sources and sinks required
 - » Output data must be distributed in the networks based on request

E. Distributed Computing: Divide & Conquer

- » Large (distributed) problems can be solved by Divide & Conquer
 - » Divide & Conquer can be implemented with Self-organizing systems using basic cells
 - » Map & Reduce are common algorithms in Big Data Computing & Analysis

[B. Morales, BDW, 2012]

E. Distributed Computing: Mobile Code

- » Traditional distributed computing uses located processes and mobile data (message passing)
- » Required paradigm shift: From mobile data to mobile code (processes)

E. Distributed Sensor Cloud Computing

- ▼ Big Data Computing
- ▼ Data Cloud
- ▼ Sensor Cloud
- ▼ Internet-of-Things
- ▼ Sensor Netw.
- **▼** MISS

[McGrath et al., ST, 2014]

F. Multi-Agent Systems and Mobile Agents The Solution?

F. Data Processing with Mobile Agents - The Solution?

- » What are they?
- » Agents are a programming and communication model for distributed & parallel computing.
- » An agent is an autonomous data processing unit, which is
 - » Situated in its environment;
 - » Traditionally a program executed on a computer system.
- » An agent interact with its environment:
 - » Hardware agents (robots) can change the physical world
 - » Software agents (programs) can change the virtual world // Data
- » A multi-agent system is a collection of loosely coupled autonomous agents migrating through the network and interacting with each others.

F. Data Processing with Mobile Agents (cont.)

- » What can they do?
- » Multi-agent Systems (MAS) can be used to implement
 - » autonomous,
 - » reliable, and
 - » adaptive data processing in distributed networks.
- » Agents can be basic cells for Self-organizing and Holonic Systems
- » Agents can learn and can modify/adapt their behaviour
- » Agents are independent of a specific host and network architecture!
- » Agents can cross network barriers in strong heterogeneous networks
 - Sensor Networks ↔ Ambient Networks ↔ Internet-of-Things ↔ Internet ↔ Clouds

F. The Agent Model: Reactive Behaviour

Perception \Rightarrow Processing \Rightarrow State Change \Rightarrow Decision \Rightarrow Action

F. Agent Processing

- » Traditionally agents are software programs processed on generic computers by using a virtual machine executing agent activities.
 - » Issues: high computational demands, complex programming interfaces.

» Solution: Agent-on-Chip and Virtual Machines

- I. The agent behaviour and activities are statically implemented in hardware
- II. The agent behaviour and activities are *dynamically* implemented with low-level VM code and the VM implemented in hardware.
- » Featuring: Low resource platform by using high-level SoC synthesis

» Required: Agent Mobility

- Migration of program code between nodes code carries agent behaviour and state (control+data)
- II. Transferring the agent state only platform implements behaviour

F. Agent Behaviour Models & Programming

Dynamic Activity-Transition Graphs

- » Unified reactive-action programming model // Finite-State-Machine!
- » The agent behaviour is defined by an Activity-Transition Graph (ATG).
- » Programming model defines autonomy, interaction, and computing.

[S. Bosse, Industrial Agents and Distributed Agent-based Learning, ECSA 2016]

F. Agent Interaction

- » Common agent communication languages and protocols: FIPA-ACL
 - » Standard; but more complex semantic structures and protocols
- » Tuple Spaces = Databases of n-ary Tuples
 - » More generic and simpler to use with basic set of operations {in,out,..}
 - » Virtualization of Storage / Resources
 - » Synchronization and Pattern Matching
- » Signals: Simple messages with single, multi- or broadcast behaviour

F. Agent Processing Platforms

- » .. Enabling Technology for MAS deployment in Sensor Clouds ..
- » Common: JAVA based frameworks, e.g., JADE [Bellifemine et al.], with Programming Language Jason/AgentSpeak [Bordini et al.]
 - » Not very suitable for mobile and embedded host devices
 - » Insufficient scaling capabilities, high resource requirements
- » Support for different Host Platforms: Embedded, Mobile, Chip, Server
- » Support for different Implementations: Hardware, Software, WEB, Simu.

JADE: Bellifemine, 2001 JAM: Bosse, 2015 CAVM: Zhou, 2008 PAVM: Bosse, 2014

PCSP: Bosse, 2013

AAPL: ATG-based Agent Programming Language,

Bosse, 2012

F. Operational Layers of Agents

Agents: Sensing Aggregation Application Large Scale & Hierarchical Networks

[Stefan Bosse, A Unified Distributed Computing Framework with Mobile Multi- Agent Systems and Virtual Machines for Large-Scale Applications: From the Internet-of-Things to Sensor Clouds, FEDCSIS Conference 2015]

F. Sensor Clouds and the Internet with Agents

- » Deployment of agents can overcome interface and network barriers
 - » Closing the gap arising between different platforms and environments
 - » Enables integration of sensor networks in WWW applications & Internet

[[]S. Bosse, From the Internet-of-Things to Sensor Clouds - Unified Distributed Computing in Heterogeneous Environments with Smart and Mobile Multi-Agent Systems, Smart Systems Integration Conference, 2015, Copenhagen]

F. Bigraphs and Ontologies; Formal Methods

Organization and clustering of nodes in domains, hosts, and agents using the Bigraph Model [Milner, 2009]

F. Learning with Agents

Agents and Multi-agent Systems are well suited for Distributed and Regional Learning [Supervised, semi-supervised, and unsupervised]

F. Distributed Learning with Agents

- » Regional Classification Learning: Sensor Data space is partitioned in regions with individual learners deployed in the regions.
- » Fusion of multiple local learned models and classification Global Model
 - » K/k: Learner Function, M/m: Learned Classification Models, D/d: Labeled Data, S/s: Sensor Data, I: Classification Labels / Symbols

$$K: f(D^{l}) \to M$$

$$M: f(S) \to l$$

$$D^{l}: (S^{1}, l_{1}), (S^{2}, l_{2}), \cdots$$

$$S: \begin{pmatrix} s_{1,1} & \cdots & s_{n,1} \\ \vdots & \ddots & \vdots \\ s_{1,m} & \cdots & s_{n,m} \end{pmatrix}$$

$$D_{istribution}$$

$$M: f(S) \to l$$

$$M_{i,j}: f(S_{i,j}^{l}) \to m_{i,j}$$

$$d_{i,j}: (S_{i,j}^{1}, l_{1}), (S_{i,j}^{2}, l_{1}), \cdots$$

$$S_{i+u,j-v} & \vdots & \ddots & \vdots \\ s_{i+u,j-v} & \cdots & s_{i+u,j+v} \end{pmatrix}$$

G. Use Cases
The Deployment of Agents in Technical and Environmental Systems

Concept

- » Load Monitoring and Load Classification of a mechanical structure
- » Distributed Sensor Network embedded in the mechanical structure
- » Mobile agents are deployed for on-line and off-line computation

[S. Bosse, Structural Monitoring with Distributed-Regional and Event-based NN-Decision Tree Learning using Mobile Multi-Agent Systems and common JavaScript platforms, SysInt Conference 2016, in Procedia Technology]

Event-based Sensor Processing & Distributed Machine Learning with Agents

- » Sensor-to-Information mapping requires stacked processing levels:
 - » Event-based data processing (instead of continuously stream-based)
 - » Distributed Machine Learning (DML) of different Load Situations
 - » Multi-agent systems used for sensor pre-processing, event localization, learning, computation, and data/information distribution.

Sensor Processing & Machine Learning with different Agent Behaviours 1

Node Agent: Local sensor acquisition and event-based Sensor Processing Learner Agent: Load Classification with local ML in a Region-of-Interest (ROI) Explorer Agent: Self-organizing Divide&Conquer system for Sensor Aggregation

^{1. [}Bosse, DOI 10.1016/j.protcy.2016.08.063, 2016]

- » Local Learner agents perform sensor aggregation in the ROI in Learning & Classification mode using Explorer agents mode switch by Notification agents -
- » Classification mode: Voter agents distribute classification votes to Election agents (network corners)
- » Classification mode: Global voting with majority decision by Election agents

Ex.: Event-based Sensor Distribution with Explorer Agents and D&C

- » Explorer agents try to find clusters of stimulated sensors in a ROI
- » If a correlated cluster was detected, Distribution agents are send out¹

^{1. [}Bosse, Lechleiter; DOI:10.1016/j.mechatronics.2015.08.005; 2016]

» Simulation & Results

- » MAS Simulation in SEJAM (Simulation Environment on top of a JAM VM)
- » Sensor Data from FEM Simulation Different Load Situations (L0,L1,..)
- » (Left) Event-based Agent Population (Right) Classification Results (Ex.)

[S. Bosse, Structural Monitoring with Distributed-Regional and Event-based NN-Decision Tree Learning using Mobile Multi-Agent Systems and common JavaScript platforms, SysInt Conference 2016, in Procedia Technology]

G. Use Case II: Distributed Earthquake Monitoring

- » Same approach as used in Structural Monitoring, Micro- → Macro-Scale
- » Tasks performed with mobile agents:
 - » Distributed learning and prediction of earthquake events
 - » Sensor pre-processing and event-based sensor distribution

[Left: Google Maps, s: Seismic Station of the CI Network] [Middle: Seismic Stations+Mobile Devices = Sensor Cloud] [S. Bosse, Distributed Machine Learning with Self-organizing Mobile Agents for Earthquake Monitoring, SASO/DSS Conference 2016]

G. Use Case II: Distributed Earthquake Monitoring (cont.)

» Simulation & Results

- » Real Seismic Data from Earthquake events were used in Simulation
- » (Left) Data Reduction (Middle) Agent Population (Right) Class. Results (Ex.)

[S. Bosse, Distributed Machine Learning with Self-organizing Mobile Agents for Earthquake Monitoring, SASO/DSS Conference 2016]

H. Conclusions

- » The Internet-of-Things including devices equipped with Smart Materials will grow exponentially in the next decades.
 - » Result: Strong heterogeneous network environments with trillions of nodes
- » Computing with mobile agents can unite different network and host platforms
- » Multi-agent and Self-organizing Systems can scale up and support Divide-and-Conquer algorithms.
- » Agent platforms basing on virtual machines and mobile code can occupy different host platforms on a wide scale.
- » Regional Learning with global fusion is an efficient and suitable distributed approach with excellent scalability.

Industrial Agents and Distributed Agent-based Learning

Stefan Bosse

University of Bremen

Department of Mathematics & Computer Science,

ISIS Scientific Centre for Sensorial Materials

Bremen, Germany