HUMAN RISK ASSESSMENT: TOXICITY ISSUES AND CHALLENGES ASSOCIATED WITH MIXTURE OF CHEMICALS RELEASED DURING PLASTIC REUSE AND RECYCLING

> Tanushree Parsai¹, Arun Kumar² ¹PhD Scholar, ²Assistant Professor tanushreeparsai@gmail.com, arunku@civil.iitd.ac.in Department of Civil Engineering IIT DELHI

Indian Institute of Technology, Delhi

Introduction

BPA is used in polycarbonate plastic and epoxy resins, plastic consumer products like toys, water pipes, food container, infant feeding bottles and other products.

DEHP is used as plasticizer found in toys, building material, water bottles, flooring, and medical products.

Comprehensive risk assessment for simultaneous exposure of two or more than two plastic based EDC (Endocrine disrupting chemicals) have been not yet done.

Understand various gaps in literature to conduct risk assessment from exposure of human to mixture of BPA and DEHP.

Identification of risk associated with interacting effect of these plastic constituents on human, could help in suggesting actions to address knowledge gaps.

SCHEMATIC SHOWING RISK ASSESSMENT PROCESS

<u>Methodology</u>

Scenario

 Plastic products releases plastic constituents like BPA and DEHP into environment—land, water and air.

Human are exposed to these constituents through different routes:

Drinking Water

Surface water

Hazard Identification

- Toxicity of constituents depends on physical, chemical ,and toxicokinetics properties.
- BPA exposure has shown many adverse outcomes to children and adults including reproductive and developmental effects.
- DEHP has adverse effect on liver, reproductive tract, kidney and lungs.

• Average daily dose: $ADD = \frac{C_d \times DI_d}{BW}$ 10

C_d: Contaminant level in drinking water(ng/L) DI_d: Average daily intake of drinking water (L/d) BW: Body weight (kg)

$$ADD = \frac{C_s \times DI_s}{BW}$$

Cs: contaminant level in drinking water (ng/L) Dls: Average daily intake while swimming in surface water (L/d) BW: Body weight (kg)

Body weight	DI _d (Drinking water)	DI _s (Swimming)
60Kg	2L/d	0.1L/D

Dose-Response

- RfD value for mixture of DEHP and BPA not available.
- Some of the studies suggest BPA and phthalates, can promote epigenetic transgenerational inheritance of adult onset disease (Manikkam et al.,2013).
- RfD value for individual chemical as shown in table(US EPA)

Plastic constituent	RfD (mg/kg/day)	PF (/mg/kg/day)
BPA	5×10 ⁻²	-
DEHP	2×10-2	1.4×10 ⁻²

Risk Characterization Risk Estimate Individual Chemical

Individual Chemical—Non-Cancerous effect

$HQ(Hazard Quotient) = \frac{ADD}{RfD}$

Individual Chemical—Cancerous effect

3

4

Incremental life time risk $LCR = CDI \times PF$

 $CDI = \frac{C \times CR \times EF \times ED}{BW \times AT}$

CDI is chronic daily intake by ingestion (mg/kg day), CW is chemical concentration in water (mg/L), IR is ingestion rate (L/day), EF is exposure frequency (days/year), ED is exposure duration (years), BW is body weight (kg), AT is averaging time.PF is Potency Factor. HQ<1 (No risk) HQ>1 (Potential risk) Risk Estimate for Mixture of Chemicals

When there is no interaction—Dose additivity

$$HI = \sum_{j=1}^{n} HQj$$

When there is interaction between Chemicals

$$HIint = \sum_{i=1}^{n} (HQ_i \times \sum_{j \neq i}^{n} f_{ij} M_{ij}^{B_{ij}\theta_{ij}})$$

$$\mathbf{f}_{ij} = \frac{\mathbf{H}\mathbf{Q}_j}{\mathbf{H}\mathbf{I}_{add} - \mathbf{H}\mathbf{Q}_i}$$

5

6

7

$\theta_{ij} = \frac{\left(HQ_i \times HQ_j\right)^{0.5}}{\left(HQ_i + HQ_j\right) \times 0.5}$

HI_{int} = HI modified by binary interactions data; HQ_i = hazard quotient for chemical i ; f_{ij} = toxic hazard of the jth chemical relative to the total hazard from all chemicals potentially interacting with chemical i (thus j cannot equal i),; M_{ij} = interaction magnitude, the influence of chemical j on the toxicity of chemical I; B_{ij} = score for the strength of evidence that chemical j will influence the toxicity of chemical I; Oij = degree to which chemicals i and j are present in equitoxic amounts.

8

Results And Discussion

Calculated Risk estimate values of hypothetic exposure of BPA and DEHP(no mixture toxicity)

WATER TYPE	CONCENTRATION (µG/L)	ADD(µG/KG WT/D) (EQ 1A & 1B)		
			hq(non- cancerous)	lcr(cancero US)
	NON-CANCEROUS	EFFECTS BPA (RFD=50	µG/KGWT/D)	
DRINKING WATER	0.031	1.03×10 ⁻³	2.06×10 ⁻⁵	-
SURFACE WATER	21	0.035	7×10-4	-
EFFECTS	DUE TO DEHP (RFD=	=20 μG/KGWT/D; PF=1.	4×10 ⁻² /MG/KG/	/DAY)
			hq(non- cancerous)	lcr(cancero US)
DRINKING WATER	8.780	0.293	0.0146	4.102×10 ⁻⁶
SURFACE WATER	320	0.533	0.0267	7.462×10-6

Calculated risk estimate values of exposure to plastic constituents mixture (Without interaction)

REFERENCE	EXPOSURE SCENARIO	CONCE	ONCENTRATION (RFD=20µG/KG WT/D)		G/KG	BPA (RFD=50µG	HAZARD INDEX(NON- CANCEROUS)	
		DEHP (µg/L)	BPA (µg/L)	ADD ₁	HQ1	ADD ₂	HQ ₂	
CASAJUA N AND LACORTE (2003)	INGESTION OF DRINKING WATER	0.134	0.01	0.004467	0.000223	0.005667	0.000113	0.000337
AMIRIDOU AND VOUTSA, (2011)	INGESTION OF DRINKING WATER	0.580	0.170	0.019333	0.000967	0.000333	6.67×10 ⁻⁶	0.000973
FROMME ET AL.(2001)	INGESTION DURING SWIMMING	97.8	0.41	0.163	0.00815	0.683333	0.013667	0.021817
TRAN ET AL.(2015)	INGESTION DURING SWIMMING	1.7	0.79	0.002833	0.000142	1.316667	0.026333	0.026475

HQ for mixture of plastic constituents (Without Interaction) is <1,Hence water is safe with no risk.

Calculated risk estimate values of exposure of plastic constituents mixture (With interaction) Bij=Category I; $M_{12}=M_{21}=5$; $F_{12}=F_{21}=1$

Data Source	Exposure Scenario	HQ ₁	HQ ₂	$\Theta_{ij}=\Theta_{12}=\Theta_{21}$	B _{ij=} B ₁₂ =B ₂₁ (Category I)		$\mathbf{HI}_{int} = \sum_{i=1}^{n} (HQ_i \times \sum_{j \neq i}^{n} f_{ij} M_{ij}^{B_{ij}\theta_{ij}})$	
					S	А	SYNERGISM	ANTAGONISM
CASAJUAN AND LACORTE (2003)	INGESTION OF DRINKING WATER	0.000223	0.000113	0.94511	1	-1	0.0015	7.34×10 ⁻⁵
AMIRIDOU AND VOUTSA, (2011)	INGESTION OF DRINKING WATER	0.000967	6.67×10 ⁻⁶	0.16495	1	-1	0.0013	0.000746
FROMME ET AL.(2001)	INGESTION DURING SWIMMING	0.00815	0.013667	0.96750	1	-1	0.1035	0.0046
TRAN ET AL.(2015)	INGESTION DURING SWIMMING	0.000142	0.026333	0.14590	1	-1	0.0335	0.0209
S- Synergism, A- Antagonism								

HQ value is less than 1, hence no risk.

Calculated risk estimate values of exposure of plastic constituents mixture (With interaction) Bij Category II; $M_{12}=M_{21}=5$; $F_{12}=F_{21}=1$

DATA SOURCE	EXPOSURE SCENARIO	HQ1	HQ ₂	θ _{ij=} θ ₁₂ =θ ₂₁	B _{ij=} B ₁₂ =B ₂₁ (Category II)		$Hi_{int} = \sum_{i=1}^{n} (HQ_i \times \sum_{j \neq i}^{n} f_{ij} M_{ij}^{B_{ij}\theta_{ij}})$	
					S	А	Synergism	Antagonism
CASAJUAN AND LACORTE (2003)	INGESTION OF DRINKING WATER	0.000223	0.000113	0.94511	0.75	-0.5	0.001054	0.000157
AMIRIDOU AND VOUTSA, 2011	INGESTION OF DRINKING WATER	0.000967	6.67×10 ⁻⁶	0.16495	0.75	-0.5	0.001188	0.000852
FROMME ET AL.(2001)	INGESTION DURING SWIMMING	0.00815	0.013667	0.96750	0.75	-0.5	0.070142	0.010015
TRAN ET AL.(2015)	INGESTION DURING SWIMMING	0.000142	0.026333	0.14590	0.75	-0.5	0.031574	0.023542
S- Synergism, A- Antagonism								

HI(Hazard Index) for plastic constituents is less than 1, which indicates no risk.

-n Stock Pi-	HAZARD IDENTIFICATION			
Knowledge Gap		Suggested Actions		
Lack of Information about co-occurrence of chemicals	• Inventory of occurrent environment needs to	nce of chemicals in be developed.		
Combined toxicity				
information not available	• Toxicology research needs to be carried out for mixture of chemicals dosing.			
No methodology to identify mixtures	• Monitoring of consti- simultaneously to de- co-occurrence.	tuents termine chance of		

Knowledge Gap

Aggregate effect of mixture through various routes of exposure

EXPOSURE ASSESSMENT

Suggested Actions

• More research needs to be done to understand combined effect from oral, dermal and inhalation route

Concentration of BPA and DEHP simultaneously in drinking water and surface water is limited. • More laboratory and field monitoring data by collecting more samples and analyzing them.

Uncertainty exists in accuracy of exposure data.

- Application of new technology to epidemiology[44].
- Use of Biomarkers

Knowledge Gap

DOSE-RESPONSE ASSESSMENT

Suggested Actions

RfD value of mixture of chemicals is not available

- Monitoring and modeling needs to be done to derive combined RfD formula;
- Create database to generate combined RfD value

Interaction type (synergism or antagonism) Information obtained from dose-response studies; information on toxicity mechanism; mode of action

Knowledge Gap

RISK CHARACTERIZATION

Suggested Actions

Interaction effect from cancerous and noncancerous plastic constituents • Research on combine effect of cancerous and noncancerous plastic constituents.

Weight of evidence factor(B): Based on data made by group of experts; rough values; synergism and antagonism effect • Some mathematical basis needs to be developed for estimating this factor; more information on combined effect.

Interaction magnitude(M): synergism and antagonism interaction not considered; generally taken as 5 but this does not have strong empirical background.

• More research on synergism and antagonism effect.

TOP THREE MAJOR GAPS

Risk can be calculated with maximum accuracy by using interaction formula if these gaps are filled

Information on Cooccurrence of plastic constituents Uncertainty in determining Factor Bij (US EPA) used in Hazard index interaction Eq 6.

Uncertainty in determining Mij used in Hazard index interaction Eq 6.

References

- R. Hertzberg, R. Assessment, F. Technical, R. A. Forum, and U. S. E. P. Agency, "Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures," no. August, 2000.
- M. Manikkam, R. Tracey, C. Guerrero-Bosagna, and M. K. Skinner, "Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations," PLoS One, vol. 8, no. 1, p. e55387, 2013.
- B. C. Tran, M. J. Teil, M. Blanchard, F. Alliot, and M. Chevreuil, "BPA and phthalate fate in a sewage network and an elementary river of France. Influence of hydroclimatic conditions," Chemosphere, vol. 119, pp. 43–51, 2015.
- N. Casajuana and S. Lacorte, "Presence and release of phthalic esters and other endocrine disrupting compounds in drinking water," Chromatographia, vol. 57, no. 9–10, pp. 649–655, 2003.
- D. Amiridou and D. Voutsa, "Alkylphenols and phthalates in bottled waters," J. Hazard. Mater., vol. 185, no. 1, pp. 281–286, 2011

- H. Fromme, T. Küchler, T. Otto, K. Pilz, J. Müller, and A. Wenzel, "Occurrence of phthalates and bisphenol A and F in the environment," Water Res., vol. 36, no. 6, pp. 1429–1438, 2002.
- NIH-HHS, "Bisphenol A (BPA)," 2010.
- IHCP Institute for Health and Consumer Protection, "Summary Risk Assessment Report - Bis(2-Ethylhexyl) phthalate (DEHP)," 2008.
- C. . Gerba, "Risk Assessment," Academic Press, London, 2000.
- W. Q. Betancourt, D. C. Duarte, R. C. Vásquez, and P. L. Gurian, "Cryptosporidium and Giardia in tropical recreational marine waters contaminated with domestic sewage: Estimation of bathingassociated disease risks," Mar. Pollut. Bull., vol. 85, no. 1, pp. 268–273, 2014.

THANK YOU