______ el ot o

'J)J)), e UNIVERSITY

State University of New York

Mechanical Engineering

The 3rd International Electronic Conference on Sensors and
Applications




Outline

L

o Part I: Gas Sensing and Switches

-Jump-up and jump down switches (with controllers)
-Pull-1n based switches (without controllers)

o Summary and Conclusions Part I

o Part II: Acceleration Triggers and Switches
-Moderate Acceleration

-Low-g

o Summary and Conclusions Part II



Part I: Gas

L S




l}) King Abdullah University of
Science and Technology

TRANSACTIONS ON ELECTRON DEVICES, VOL. EpP-33, NO. 4, APRIL 1986

10

@ © N, PURGE

W 8} aNO PURGE )
[G)

w B
w é
S s
=Tl

A

®

w 2

w

<T

T o

a 5 025 05 o0 10

R/PC
RELATIVE PARTIAL PRESSURE

Fig. 12. Equilibrium phase shift as a function of relative xylene partial
pressure, with and without purging in nitrogen after each measurement.
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FIG. 1. Frequency response of a silicon nitride cantilever with one side
partially covered with evaporated gold. The frequency decreases with expo-
sure time indicating mass loading due to mercury adsorption on the gold
coating.

Thundat et al., 1995.
“Detection of mercury vapor using resonating
microcantilevers”

Fig. 7. SEM of type B microbridge with apertures.

Howe and Muller, 1986.

Fig. 2. a Scanning electron microscopy image of a type A micromechani-
cal sensor array with eight sensors (500 um long, 100 um wide and 0.8 um
thick). The pitch 1s 250 pm. Such arrays are suitable for parallel and dif-
ferential readout in the static measuring mode. b Type B sensor array with
the same length and width as above, but a thickness of 12 um. The greater
stiffness of the sensors is suitable for the dynamic measuring mode
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Fig. 4. a Response of a single PMMA-coated sensor

Lang, et al., “A chemical sensor based on a

micromechanical cantilever array for the identification

of gases and vapors. Applied Physics A.
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Bifurcation-Based Mass Sensors
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Zhang and Turner, Sensors and Actuators A: Physical
Bifurcation-based mass sensing using Volume 122, Issue 1, 29 July 2005, Pages 23-30
piezoelectrically-actuated Application of parametric resonance amplification in a single-crystal
microcantilevers silicon micro-oscillator based mass sensor

Kumar et al., APL, 2011 5




Objective
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1 There is an increasing interest to realize smarter sensors
and actuators that can deliver a multitude of sophisticated
functionalities while being compact in size and of low
cost.

d We report here combining both sensing and actuation on
the same device based on a single microstructure.
Specifically, we demonstrate a smart resonant gas (mass)
sensor, which 1n addition to being capable of quantifying
the amount of absorbed gas; can be autonomously
triggered as an electrical switch upon exceeding a preset
threshold of absorbed gas.

6

d We integrate a Metal-Organic Framework MOF thin film.



Part I. Programmable Switch

e

* The softening and hardening nonlinear behaviors of the

microbeams are exploited to demonstrate the 1deas.
* For gas sensing, an amplitude-based tracking algorithm 1s

developed
 Then, a M|

to quantify the captured quantity of gas.

EMS switch triggered by gas using the nonlinear

response of the microbeam 1s demonstrated.

* The proposed switch 1s promising for delivering binary
sensing information, and also can be used directly to
activate useful functionalities, such as alarming.

\ Bouchaala, N Jaber, O Yassine, O Shekhah, V Chernikova, M Eddaoudi, M I Younis, “Nonlinecar-Based MEMS Sensors and Active

Switches for Gas Detection,” Sensors 16 (6), 758, 2016 7
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* Lower electrode, composed of
Symbol Quantity Dimensions
gold/chrome [ Length 600 pm
* Amorphous silicon sacrificial layer h Thickness 6.85 pm
.. b Width 50 pm
* Structural layer made of polyimide (PI) J Gap 2 um

and metal on top.



MOF Coating

* Metal-Organic Framework MOFs are very promising porous
materials for gas sensing applications

* The clamped-clamped microbeam was coated with a MOF thin
film using an inkjet printer using a nozzle with 20 um of diameter.

* We used Cu3(btc)2.xH20 MOF (btc1s 1, 3, 5-
benzenetricarboxylate), also known as HKUST-1.
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P Dynamic Characterization
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*(a) For different DC voltages showing a transition from a linear to a softening behavior at
3.3 Torr, and (b) for different AC voltages showing the transition from linear to hardening
behavior at 220 mTorr.
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= Jump-Down Sensor and Switch

Real time measurement
LED output

Lk

Voltage [V]

X
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Time [s]

Time history of the sensor to trigger a LED upon water vapor exposure.

*The outcome from the DAQ is connected to a microprocessor from Arduino .
*A Labview program with an Arduino library is developed in order to read the
voltage coming from the laser Doppler controller at a fixed frequency.

*The algorithm is based on calculating the amplitude difference between two
successive points during a frequency sweep. When the absolute value of the
difference between the current and previous data point exceeds a defined
constant, switching is triggered.

A LED 1s connected to the Arduino digital output in order to indicate the
switching.

A Bouchaala, N Jaber, O Yassine, O Shekhah, V Chernikova, M Eddaoudi, M I Younis, “Nonlinear-Based MEMS Sensors and Active
Switches for Gas Detection,” Sensors 16 (6), 758, 2016 12



&' Jump-Down Sensor and Switch
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*The linearly-fitted curve can be used to relate the amplitude change to
the frequency shift, and hence, the amount of absorbed mass.

* Time history of the beam displacement upon gas exposure indicating
the sudden jump down, and hence, the switching event.

A Bouchaala, N Jaber, O Yassine, O Shekhah, V Chernikova, M Eddaoudi, M I Younis, “Nonlinear-Based MEMS Sensors and Active 13
Switches for Gas Detection,” Sensors 16 (6), 758, 2016
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Jump-Down Sensor and Switch
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*The vertical line indicates a fixed operating frequency of the resonator during vapor exposure.

*Clearly, the amplitude of the resonator increases with the absorption of vapor.

* Measured time history showing the displacement at (¢) point A1, (d) point A2 and (e) point A3.
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~  Jump-Down Sensor and Switch

Am =R"'Af =395pg
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*The calculated slope is used to determine the frequency shift as a function of time.
*Measuring the frequency shift as a function of time, we found Af = 85 Hz before

reaching the jump zone.
*The frequency shift coming from the real time measurement Af = 85.55 Hz 1is very

close to the calculated frequency shift using linear fitting.

A Bouchaala, N Jaber, O Yassine, O Shekhah, V Chernikova, M Eddaoudi, M I Younis, “Nonlinear-Based MEMS Sensors and Active
Switches for Gas Detection,” Sensors 16 (6), 758, 2016 15



P Jump-up Switch Triggered by Gas
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*Frequency response for the Jump-up switch indicating in the vertical red line the
operating point of the device prior to mass detection. The red line highlights the jump
in the response from the lower to the upper branches, which occurs upon mass
detection when exceeding a certain threshold.

*Time history of the beam displacement upon gas exposure showing the jump from
the lower to the upper dynamical states, thereby triggering the switching event.

A Bouchaala, N Jaber, O Yassine, O Shekhah, V Chernikova, M Eddaoudi, M I Younis, “Nonlinear-Based MEMS Sensors and Active 16
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Vpe=3Vand V= 1V and at a pressure of 220 mTorr. (a) Conductance and susceptance as a function of the frequency near resonance. (b)
Admittance and phase as a function of the frequency near resonance. (c) Variation of the phase in time at f=91.11 kHz.

*The frequency shift due to thermal fluctuations around the resonator
can be related to the phase variation at a given frequency.

*A precision impedance analyzer connected to a PC with National
Instruments data acquisition has been used to characterize the
microbeam electrically.
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&V Noise Analysis

(

The phase evolution as a function of time at a fixed frequency has been shown. The phase noise has been
calculated to be dg=0.135°

, which leads to a frequency shift Of e =0d0/ ‘d ¢/df ‘ =79.88Hz

The responsivity of the sensor, which can be expressed as

2m =
m—l — dm — efff meff a m
df ﬁes,OV

where f,, ,,,=86.8 kHz is the natural resonant frequency at V- =0V and

- =4.65pg/ Hz
om_ =RSf

noise noise

om, .. =371.442 pg

noise

A Bouchaala, N Jaber, O Yassine, O Shekhah, V Chernikova, M Eddaoudi, M I Younis, “Nonlinear-Based MEMS Sensors and Active 18
Switches for Gas Detection,” Sensors 16 (6), 758, 2016



g Can we do 1t without an algorithm,
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Time history of the midpoint
displacement of the beam
during vapor exposure.

* The figure shows the gradual increase of the midpoint displacement of the
microbeam during the ethanol vapor exposure. This increase in displacement is due
to the shift of the pull-in band toward the operating frequency.

A Bouchaala, N Jaber, O Shekhah, V Chernikova, M Eddaoudi, MI Younis, “A smart microelectromechanical sensor and switch
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The slopeis |[dY/d f| = 3.95 x 1073 (um/H z) .

Based on the slope and the starting operating frequency, one can determine the frequency
shift, and hence the absorbed mass, from the measured amplitude.

The calculated frequency shift to reach pull in is Af = 89.4 Hz corresponding to an added
mass threshold of 4m = 536 pg.

The actual measured value of 87 Hz (3% error).

The added mass threshold can be controlled by shifting the operating frequency to lower or
higher values. For example, to decrease the mass threshold value, the operating frequency
can be moved closer to the pull-in band up to the limit the noise permits (6 f;,pise

=60 Hz).

A Bouchaala, N Jaber, O Shekhah, V Chernikova, M Eddaoudi, MI Younis, “A smart microelectromechanical sensor and switch
triggered by gas,” Applied Physics Letters 109 (1), 013502, 2016. 23
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We demonstrated the advantage of using the nonlinear response of an
electrostatically actuated resonator for gas sensing.

The clamped-clamped microbeam is coated with HKUST-1 MOF,
which is a very sensitive chemical layer.

We demonstrated that frequency shift can be tracked in nonlinear
regime using the linearly fitted upper branch in hardening behavior
Two 1deas of switches triggered by mass detection were
demonstrated based on the jumps a resonator experiences in a
hardening or a softening behavior.

Switch triggered by mass detection based on dynamic pull-in, which
eliminates the need for controllers, was demonstrated.

24



Part II: Switch Trigger

!'_ by Acceleration

A new concept of switches (triggers) that are actuated at or beyond a
specific level of mechanical shock or acceleration. The principle of
operation of the switches 1s based on dynamic pull-in instability
induced by the combined interaction between electrostatic and
mechanical shock forces. These  switches can be tuned to be
activated at various shock and acceleration thresholds by adjusting
the DC voltage bias.
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Low-g Electrostatically Actuated
Resonant Switch

* A new concept 1s presented of an electrostatically actuated resonant
switch (EARS) for earthquake detection and low-g seismic
applications.

* The resonator 1s designed to operate close to instability bands of
frequency-response curves, where it is forced to collapse dynamically
(pull-1n) 1f operated within these bands.

* By careful tuning, the resonator can be made to enter the pull-in
instability zone upon the detection of the earthquake signal, thereby
snapping down as an electric switch. Such a switching action can be
functionalized for alarming purposes or can be used to activate a

network of sensors for seismic activity recording.
35
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Simulation Vs. Experiment
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~ow-g Switch for Earthquake:

b

* In the event of earthquakes, immediate actions are required.
 Structural health monitoring: powering sensors when needed.
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Experimental Setup
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P Summary and Conclusions Part 11

+

* We presented experimental and theoretical investigation to the
characteristics and performance of a new class of tunable threshold-
acceleration switches actuated at or beyond a specific level of
mechanical shock or acceleration.

* The exploitation of the dynamic pull-in instability of electrostatically
actuated resonators to realize a sensor and an actuator at the same
time has been demonstrated.

* The new concept of an electrostatically actuated resonant switch
(EARS) for earthquake detection was validated numerically and
experimentally, where measurements showed the EARS ability to
switch due to a small amount of acceleration.

 The EARS concept could be useful in many applications to do
switching action or to activate different devices.
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