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Abstract: The mean molecular connectivity indices (MMCI) proposed and used in previous studies 

are used here in conjunction with the well-known molecular connectivity indices (MCI) to remodel six 

properties of organic solvents. The MMCI and MCI descriptors of the Multilinear relationships for the 

six properties, obtained with the multilinear least - squares (MLS) procedure, were used to perform the 

artificial neural network (ANN) computations. The aim is to detect advantages and underline the limits 

of the ANN approach that, even if it improved the model, it is somewhat ‘fuzzy’ concerning the stability 

of the modeling. The MLS procedure replicates the obtained results as long as one wishes, a 

characteristic not shared by the ANN methodology, which, if on one side increases the quality of a 

description on the other increases also its overfitting. The present study reveals also how ANN 

methods prefer MCI relatively to MMCI descriptors. Four different types of ANN computations show 

that (i) MMCI descriptors are preferred with properties with poor number of points. MLS (ii) is to be 

preferred over ANN statistical results, with some exceptions, when the number of ANN weights is 

similar to the number of correlation coefficients of MLS. Furthermore, in (iii) some cases MLS 

modeling quality is quite similar to the modeling quality of ANN computations. 
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Graphical Abstract: 

. 

Introduction: 

 

Recently 
1
 the mean molecular connectivity 

indices, MMCI, were introduced and used to 

model eleven properties of organic solvents. The 

multlinear least squares, MLS, used to derive the 

quantitative structure-property relationships 

(QSPR) showed that three out of six properties, 

the refractive index, RI, the flash points, FP, and 

the UV cutoff values, were modeled with the 

mean molecular connectivity indices, MMCI, while 

the remaining properties were modeled with the 

well-known molecular connectivity indices, 

MCI. The MMCI indices are centered on the 

basic concepts of the delta, valence delta, I- and 

S-indices that go back to the origins of the 

molecular connectivity theory. 
2-7

 Results from 

two other recent studies that used semiempirical 

sets of descriptors 
8, 9

 showed that the artificial 

neural network (ANN) procedure with variable 

number of hidden neurons, chosen by the 

software, normally improves the quality of a 

QSPR obtained by the aid of the MLS 

methodology. Nevertheless, this improvement is 

somewhat artificial as the ANN computations for 

the eleven properties employed a number of 

weights, due to the presence of more than one 

hidden neuron, much greater than the number 

correlation coefficients in the MLS procedure. 

The present work aims are to pin down the real 

advantages but also the drawbacks of the ANN 

methodology applying it to the model of six 

properties of Ref.1 with only either MCI or 

MMCI used as descriptors. Four different types 

of ANN computations are here performed to 

detect the level of the achieved improvement, if 

any, (a) with one hidden neuron, (b) with a pre-

fixed number of hidden neurons, (c) with a 

variable number of hidden neurons chosen by the 

software, and (d) with a minor number of 

descriptors, for the one hidden neuron case. This 

last case was tried to render the number of ANN 

weights equal to the number of correlation 

coefficients of the MLS case. Furthermore, it was 

monitored if ANN computations prefer either 

MCIs or MMCIs for modeling purposes. The 

descriptors for the six properties are those of ref. 

1 but whenever a property was not satisfactorily 
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modeled by the given MCI (or MMCI) the 

second or third best MCI (or MMCI) were 

chosen. 

 

Materials and Methods: 

 

Table 1 shows the molecular connectivity  

indices, the molecular pseudoconnectivity   

indices (pseudo-MCI), the dual connectivity and 

pseudoconnectivity indices (Dual MCI, pseudo-

MCI) used in this study. Three new indices are 

also defined:  = EAnEA,  = EA<SEA>, and 

TΣ/M =  
3
/M 

1.7
 (M = molar mass);  encodes the 

number of electronegative atoms (nEA),   

encodes the sum of the S-State index for the 

electronegative atoms, N, O, F, Cl, Br (<SEA> is 

the average value for a specific type of atom). 

Table 2 shows the definitions of the MMCI (the 

first M stands for ‘mean’). 

In Tables 1, and 2 i = 1-N denotes the atoms of a 

molecule, ij denotes directly σ-bonded atoms, 

and in Table 2, p = N. The Lehmer mean, 
L
M, for 

p = 2, equals the symmetrical mean, 
S
M. 

Replacing in Table 1  with the valence delta,  

v
, allows to obtain the corresponding valence 

MCI, D
v
, 

0v
, 

1v
, v

t,
 0d

v
, 

1d
v
, 

1s
v
, while 

replacing the Intrinsic-I-State with the 

Electrotopological S-State index the 

corresponding pseudoconnectivity electro-

topological indices are obtained, 
SE, 

0E, 
1E, 

TE, 
0Ed, 

1Ed, 
1Es. 

3-9
 Replacing in Table 2 , 

with  
v
, I and S three other subsets of MMCI are 

obtained: the valence, {
A
M

v
, 

G
M

v
, 

H
M

v
, 

R
M

v
, 

S
M

v
, 

U
M

v
, 

Ho
M

v
, 

L
M

v
, 

St
M

v
}, the I-State, {

A
MI, 

G
MI, 

H
MI, 

R
MI, 

S
MI, 

U
MI, 

Ho
MI, 

L
MI, 

St
MI}, and the E-

State {
A
ME, 

G
ME, 

H
ME, 

R
ME, 

S
ME, 

U
ME, 

Ho
ME, 

L
ME, 

St
ME} MMCI, respectively. Because some S 

values can be negative (highly electropositive 

atoms) to avoid imaginary S-State MMCI values, 

a rescaling of the S value is undertaken as it is 

explained in ref. 7. Summing up, we have thirty-

one MCI and thirty-six MMCI. Every index was 

obtained with a visual basic home - made 

program that runs on a normal PC that uses both 

adjacency and distance matrices 
6
. 

The multilinear least squares procedure of 

Statistica 8 was used to find the best MCI and 

MMCI set of descriptors for the training set of 

Table 3, which is then used to evaluate the left-

out compounds [those with (°) in Table 2,  30% 

of all compounds, 25% for El]. The overall 

quality of each model was obtained with the 

Excel spreadsheet by plotting the observed 

versus the calculated property for the training 

and for the training plus evaluated points. The 

choice for the number of indices of a relationship 

has been done having in mind the Topliss-

Costello rule: 
10

 the ratio of data points to the 

number of variables should be higher or equal to 

five, and should provide a correlation coefficient 

factor r > 0.84, i.e., r
2
 > 0.70. The source for the 

properties of organic solvents listed in Table 3 is 

in ref. 7. 

ANN methods perform regression and data 

validation, and carry out both tasks in a non-

parametric way that makes no assumption 

regarding the relationship between y and x, 

where y = f(x). This means that the function 
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Property = f(indices) is not known a priori. This 

non-parametric model is a kind of black box that 

tries to discover the mathematical function that 

can approximate the relationship between the 

indices and the property well enough. It uses 

highly flexible transfer functions with adaptable 

parameters that can model a wide spectrum of 

functional relationships.
11

 The activation 

functions for both hidden and output nodes used 

in Statistica 8 are: identity (i), logistic sigmoid 

(l), hyperbolic tangent (t), sine (s), and 

exponential (e). 

ANN results were obtained with the built-in 

utility of Statistica 8, the multilayer perceptron 

neural network (MLP). The used network has 

three-layer feedforward architecture with 

unidirectional full connections between 

successive layers and with error backpropagation 

(or backprop). The three layers are: input units 

→ hidden units → output units (units are also 

known as neurons or nodes), and they correspond 

to: variables  → hidden units → P, where the 

only output unit is the targeted property, P. In 

present study the number of variables 

corresponds to the number of MCI or MMCI 

descriptors. Each neuron (or node) in a particular 

layer is connected to every neuron in the next 

layer. The connections between neurons are 

practically the weights that determine the values 

assigned to the nodes. There exist additional 

weights assigned to the bias values that act as 

node value offsets, i.e., the weights of the 

connections: input bias → hidden neuron, and 

hidden bias → P. The number of weights is thus: 

[(No. input nodes + 2)·(No. hidden nodes) + 1]. 

The weights adjusted by the training process are 

initially random and are passed to all nodes of 

the following layer. The training process is 

iterative and each iteration is called an epoch. 

The weights are slightly varied in each epoch to 

minimize the sum-of-squares error function: SOS 

= i=1-N (Piclc - Pi)
2
, where Piclc (clc = calculated) 

is the i
th 

predicted value (network outputs) of the 

property, and Pi is the target value. This function 

is the sum of differences between the prediction 

outputs and the target defined over the entire 

training set of points (compounds) N. Statistica 8 

allows setting the number of networks to train 

and retain (Ntr/Nre). Here, two sets of values are 

chosen: Ntr/Nre = 10
3
/200 and Ntr/Nre = 

10
5
/200. In the corresponding tables only Ntr is 

shown as Nre is constant. The ANN network of 

Statistica 8 optimized with the BFGS (Broyden-

Fletcher-Goldfarb-Shanno) algorithm ensures a 

fast convergence rate.
12

  

Statistica 8 initially sets by defect the number of 

hidden nodes between 3 and 11. Nevertheless, 

we will here impose four procedures (for the 4
th

 

procedure see later on): (i) first a single hidden 

node, then (ii) hidden nodes from two to twelve 

will sequentially be tried ‘by hand’ (i.e., program 

does not allow the imposed number of hidden 

nodes to be changed), and, finally, (iii) the 

program chooses the number of hidden nodes. To 

come as close as possible to the MLS results it 

was decided (iv), to compute again the one 

hidden neuron case where either one or two 

indices with the lowest sensibility value have 
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been deleted. In this case, for instance, the 

number of weights for the 4-1-1 case of Tb is 7, 

and it equals the number of correlations 

coefficients from the MLS calculations with six 

indices.  

The results of the five procedures, one MLS and 

four ANN, given in separate tables, allow a 

meaningful comparison among them. The MLS 

procedure optimizes a number of regression 

parameters equal to the number of variables plus 

one (the bias parameter), which means that a 

practical comparison between the two methods 

should only be performed when ANN uses only 

one hidden neuron. In this case, due to the 

previous relation, the number of ANN weights 

equals the number of MLS correlation 

coefficients plus two. One should expect that 

with growing number of hidden neurons the 

model of a property should constantly improve 

due to the growing number of weights for each 

variable (akin having a variable with many 

different regression coefficients). With ANN it is 

not rare the case that as the model becomes 

exceedingly good with growing number of 

weight parameters, and this frequently results in 

overfitting with exceedingly poor externally 

evaluated values. The choice of training (TR = 

80% of the values in Table 3) and test sets (TE = 

20% of the values, i.e., the underlined bold 

values in this same Table) usually avoids 

overfitting as the network is repeatedly trained 

for a number of cycles so long as the test error is 

decreasing, otherwise the training is halted. This 

method, also known as ‘early stopping’ 

procedure 
13

 avoids the trap that the program will 

always choose the maximum number of hidden 

nodes. Actually each property shows an optimal 

number of nodes which rarely corresponds with 

its maximum possible.  

 

Results: 

 

Table 4 from ref. 1, collects the MLS results for 

the six properties. The training set for the El 

property includes pentane and tetrahidrofurane. 

Table 5 through 8 collect the various ANN - 

MLP results for the set of variables (descriptors) 

of Table 4 or for the alternative (either MMCI or 

MCI) set of variables obtained with the MLS 

method. Throughout the Tables 5-8, in the first 

column are given, as in Table 4, the δ
v 

type (see 

Appendix), and the number of networks to train, 

Ntr = 10
3 

or 10
5 

(when the two numbers rose to 

similar results Ntr = 10
3
 was preferred), while 

the number of networks to retain is always 200. 

It was not always possible to achieve 

improvement in modeling with Ntr = 10
5 

even 

after three runs (more were not tried), and when 

there was improvement, it was never sharp 

excepting two cases as we shall see. The 

activation functions together with the neuronal 

architecture are in the second column of Tables 5 

– 8. In this column, 3
rd

 line, are  given for each 

property the number of epochs for which the 

ANN-MLP calculation runs even if the actual 

number of cycles used to train the model might 

be greater. In fact, as the number of epochs is not 

definitive it cannot be held as an unfailing 

parameter (it can exceed the given number). In 
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the third column is the set of variables together 

with their statistics. Throughout this column in 

the second line are the sensitivity values, which 

are the values that are due to the sensitivity 

analysis that rates the importance of the models' 

input variables. These r
2
 and s, statistics were 

obtained with the EXCEL spreadsheet plotting 

the observed property, P,  vs. the calculated one, 

Pclc, once for the training and test set compounds, 

N(aTR + bTE), and the other time for the 

training {TR} + test {TE} + external evaluation 

{EV} sets, N(aTR + bTE + cEV), where a, b, 

and c are their number. We remind the reader that 

the MLS procedure has no test compounds, only 

training compounds, N(TR). No ANN weights 

are shown as, for instance, a [5-7-1] network has 

fifty weights. Furthermore, it is to notice that 

every time an ANN-MLP runs different weights 

and sensitivity values are obtained a first non-

minor drawback avoided by the MLS procedure.  

For comparison purposes it was decided to 

maintain in the ANN calculations (see Tables 5-

8) the same number of outliers excluded 

throughout the MLS procedure and given in 

Table 4,where the exclusion was done for 

residuals greater than 3s. Clearly, such restriction 

is no more valid throughout ANN tables 5 - 8. In 

Table 5 are given the ANN results obtained with 

a single hidden neuron. Following Tables 6 and 7 

display the multiple neuron cases: Table 6 with 

an externally imposed number of hidden neurons 

that was cycled from 2 to 12, and Table 7 with 

the number of hidden neurons chosen 

automatically by the program (between 3 and 

11). For El, the program sets this number 

between 3 and 10. For those cases where similar 

good models are achieved with different sets of 

hidden nodes, the set with minimal number of 

nodes was chosen.  

 

Discussion: 

 

For an easier lecture and interpretation the 

detailed and most important statistical results 

collected through Tables 4 – 7 are summarized in 

Table 9. Table 8, illustrates a special case that 

will be discussed later on. While Tables 4 – 7 

collect the detailed information about the 

modeling of the six properties, and especially 

about the type of indices, valence deltas, and 

structure of the ANN computations, Table 9 gives 

direct information about of the various models. 

MMCI indices throughout the ANN 

computations with one hidden neuron, (ANN 

1HN, Table 5), are important descriptors for flash 

point, FP, and elutropic values, El. 

As soon as the number of hidden neurons grows 

either by external choice, enHN (Table 6), or by 

software choice, snHN (table 7), MMCIs are 

optimal descriptors only for Elutropic values 

(silica),  El, the property with the lowest number 

of points. The second thing we notice is that for 

an optimal modeling the number of hidden 

neurons (number in bold, 2
nd

 line of the statistical 

values for each property) that are externally 

chosen (ANN enHN, Table 6) is smaller relatively 

to the number of hidden neurons chosen by the 

software (last column, ANN snHN, Table 7). In 

some cases it is much smaller, like for Tb (an 
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extreme case), d, and γ. Concerning the statistical 

results we see that ANN 1HN (Table 5) improve 

at the training level (first line) over MLS (Table 

4) for Tb, and El properties, while it stays behind 

with FP, otherwise results are rather similar. 

With the whole set of compounds (second line), 

i.e., with training (and test with ANN) plus 

evaluated compound ANN 1HN (Table 5) 

calculations improve again for Tb, and El, while 

they stay behind with γ. 

The multiple hidden neuron case shows that, at 

the training level ANN enHN (Table 6), things 

improve consistently over the two previous cases 

(MLS and ANN 1HN) for Tb, d, γ, and FP. For El 

there is improvement only relative to the MLS 

(Table 4) case. Results for viscosity, η, are rather 

similar throughout the three cases. In most cases 

improvement concerns both the r
2
 and the s 

statistics. Concerning the whole set of 

compounds (tranining plus test and evaluated) 

statistics improve relatively to the two previous 

cases (MLS and ANN 1HN) for Tb, γ, and FP. 

The advantage of ANN over the MLS procedure 

is usually not drastic throughout the six 

properties. The ANN snHN (Table 7, and Table 9, 

last column) procedure with software chosen 

number of hidden neurons normally uses more 

hidden neurons that the previous ANN enHN 

(Table 6, and Table 9, before the last column) 

one. Actually, it does not achieve any practical 

improvement. Normally, its statistics are either 

worse or similar to the ANN enHN. This means 

that if you intend to let the software choose the 

number of hidden neurons then better you stick 

to the MLS modeling. 

In those cases where deletion of two indices 

resulted in a poor modeling, only an index is 

deleted. In this last case the number of weights is 

no more equal (actually is bigger by one) to the 

number of correlation coefficients of the MLS 

case. Results are shown in Table 8, and, as the 

reader can notice, two properties, γ, and El, due 

to poor modeling do not show up, while for 

properties d, and FP, only one index has been 

deleted. 

Remind that sensibility values are no absolute 

values as they normally change from run to run, 

like the weights, and they are no last word about 

the importance of an index. The statistics here 

are usually not as good as in the MLS case 

(Table 4).  

Tables 5 - 8 tell us that there is no fixed 

preferential value for the parameter Ntr (numbers 

of networks to train), sometimes quite different 

Ntr values give rise to similar statistical values 

and some other times they give rise to 

completely different ones. Thus, it is always 

worth trying several Ntr values. Concerning the 

most used values for  
v
 Tables 4 through 7 show 

that the  
v
ppo configuration is the most used, 

especially in both nHN cases (Tables 6, and 7), 

which means a strong dependence on the core 

electrons for heavier atoms (see Appendix). For 

what concerns the exponent of the fractional term 

in  
v
 (see Appendix) the most used values are 1, 

-0.5 (strong hydrogen atom dependence), and 50 

(no hydrogen atom dependence). The strong 
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hydrogen dependence of  
v
 reveals that the 

hydrogen atoms should not be underestimated.  

 

Table 1. Definition of the Molecular Connectivity Indices (MCI). Replacing δ with δv and I with S the 

corresponding valence,  v, I-State, I, and E-State, E, MCIs are obtained. 

MCI Pseudo-MCI Dual MCI +  +  Dual pseudo-MCI + TΣ/M 

D = ii 
SI = iIi 

0d = (- 0.5)Ni(i) 
0Id = (- 0.5)Ni(Ii) 

0  = (i)
- 0.5 0I = (Ii)

-  0.5 1d = (- 0.5)( N +   - 1)(i + 

j) 

1Id = (- 0.5)( N +   - 1) (Ii + 

Ij) 
1 = (ij)

- 0.5 1I =  (IiIj)
 - 0.5 1s =  (i + j)

–0.5 1Is =  (Ii + Ij)
-0.5 

t = ( i)
- 0.5 TI =(  Ii)

 - 0.5  = EAnEA ,  = EA<SEA> TΣ/M =  3/M 1.7 

N is the number of atoms, ij means corresponds to σ bond,   is the cyclomatic number. 
 
 

 

Table 2. Definition of the Mean Molecular Connectivity Indices (MMCI). Replacing δ with δv, I, and with S the 

corresponding valence, M v, I-State, MI, and E-State, ME, MMCIs are obtained. 
AM = Σi δi / n     GM = Σij(δiδj)

1/2    HM = 2Σij (δi
-1 + δj

-1)-1 

RM = Σij[(δi
2 + δj

2)/2] 1/2    SM = Σij (δi
2 + δj

2) / (δi + δj)   
UM = Σij[δi - δj + (δi

2 - 2δiδj + 5δj
2)0.5]/2   

HoM = Σij(δi 
p+ δj 

p)1/p / 2   LM = Σij(δi 
p+ δj 

p) / (δi 
p-1 + δj 

p-1)          StM = Σij[(δi 
p - δj 

p) / (pδi + pδj)]
1/(p-1)     

A: Arithmetic; G: geometric; H: harmonic; R: root mean square; S: symmetric; U: unsymmetric; Ho: Hölder; L: 

Lehmer; St: pseudo-Stolarsky 

 

Table 3. Six properties of organic solvents plus their molar mass M (gmol-1): Tb,  boiling point (K); d,  

density (at 20°C5°C relative to water at  4°C, g/cc); FP, flash point (K); η, viscosity (Cpoise, 20°C; 1at 

25°C, 2 at 15°C); , surface tension (mN/m at 25°C); and El, Elutropic value (silica).   

Solvent M Tb                   d FP   El 

(°)Acetone  58.1 329 0.791 256 0.32 23.46 0.43 

(°)Acetonitrile  41.05 355  0.786 278 0.37 28.66 0.50 

Benzene  78.1 353 0.84 262 0.65 28.22 0.27 

Benzonitrile  103.1 461 1.010 344 1.241 38.79  

1-Butanol  74.1 391  0.810 308 2.95 24.93  

(°)2-Butanone  72.1 353 0.805 270 0.40 23.97 0.39 

Butyl Acetate  116.2 398 0.882 295 0.73 24.88  

CS2  76.1 319 1.266 240 0.37 31.58  

CCl4  153.8 350 1.594  0.97 26.43 0.14 

Cl-Benzene  112.6 405 1.107 296 0.80 32.99  

1Cl-Butane  92.6 351 0.886 267 0.35 23.18  

CHCl3  119.4 334 1.492  0.57 26.67 0.31 

Cyclohexane  84.2 354 0.779 255 1.00 24.65 0.03 

(°)Cyclopentane  70.1 323 0.751 236 0.47 21.88  

1,2-diCl-Benzene  147.0 453 1.306 338 1.32   

1,2-diCl-Ethane  98.95 356 1.256 288 0.79 31.86  
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diCl-Methane  84.9 313 1.325  0.44 27.20 0.32 

N,N-diM-Acetamide  87.1 438  0.937 343    

N,N-diM-Formamide  73.1 426  0.944 330 0.92   

1,4-Dioxane  88.1 374 1.034 285 1.54 32.75  

Ether  74.1 308 0.708 233 0.24 16.95 0.29 

Ethyl acetate  88.1 350 0.902 270 0.45 23.39 0.45 

(°)Ethyl alcohol  46.1 351 0.785 281 1.20 21.97  

Heptane  100.2 371 0.684 272  19.65 0.00 

Hexane   86.2 342 0.659 250 0.33 17.89 0.00 

2-Methoxyethanol   76.1 398  0.965 319 1.72 30.84  

(°)Methyl alcohol   32.0 338  0.791 284 0.60 22.07 0.73 

(°)2-Methylbutane  

 

72.15 303 0.620 217    
4-Me-2-Pentanone 100.2 391 0.800 286    

2-Me-1-Propanol  74.1 381  0.803 310    

2-Me-2-Propanol  74.1 356  0.786 277  19.96  

DMSO  78.1 462  1.101 368 2.24 42.92  

(°)Nitromethane  61.0 374 1.127 308 0.67 36.53  

1-Octanol  130.2 469  0.827 354 10.62 27.10  

(°)Pentane  72.15 309 0.626 224 0.23 15.49 0.00* 

3-Pentanone  86.1 375 0.853 279  24.74  

(°)1-Propanol  60.1 370  0.804 288 2.26 23.32  

(°)2-Propanol  60.1 356  0.785 295 2.30 20.93 0.63 

Pyridine  79.1 388 0.978 293 0.94 36.56 0.55 

tetraCl-Ethylene 165.8 394 1.623  0.90   

(°)tetra-Hydrofuran 72.1 340 0.886 256 0.55  0.35* 

Toluene  92.1 384 0.867 277 0.59 27.93 0.22 

1,1,2triCl,triFEthane  187.4 321 1.575  0.69  0.02 

2,2,4-triMe-Pentane  114.2 372 0.692 266 0.50  0.01 

o-Xylene  106.2 417 0.870 305 0.81 29.76  

p-Xylene  106.2 411 0.866 300 0.65 28.01  

(°)Acetic acid 60.05 391  1.049   27.10  

Decaline  138.2 465 0.879     

diBr-Methane 173.8 370 1.542   39.05  

1,2-diCl-Ethylen(Z) 96.9 334 1.284     

(°)1,2-diCl-Ethylen(E) 96.9 321 1.255     

1,1-diCl-Ethylen  96.9 305 1.213     

Dimethoxymethane 76.1 315 0.866     

(°)Dimethylether  46.1 249       

Ethylen Carbonate 88.1 511  1.321     

(°)Formamide  45.0 484  1.133   57.03  

(°)Methylchloride  50.5 249  0.916     

Morpholine  87.1 402  1.005     
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Quinoline  129.2 510 1.098   42.59  

(°)SO2  64.1 263  1.434     

2,2-tetraCl-Ethane  167.8 419 1.578   35.58  

tetraMe-Urea  116.2 450 0.969     

triCl-Ethylen   131.4 360 1.476     

    (°) externally validated compounds; underlined bold values: test compounds used in ANN-MLP 

calculations, * for this property these two compounds are included in the training set {TR} (Table 4) 

and training + test sets {TR + TE} (Table 5). 

 

Table 4. Best set of descriptors for the properties of Table 3 with MLS methodology. 1st column: δv type for 

the valence-dependent indices. 2nd column: set of descriptors and their statistical quality.  

δv - type Regression equations   

 

δv
po(1) 

 

             Tb = 237.5 + 139.10 + 24.69Dv + 527.70ψI - 25.911ψI - 15000 ψE + 41.53 TΣ/M 

(24, 31, 3.5, 69, 21, 222, 10) 

                        N(TR) = 45,  r2 = 0.821, s = 22; N(+16EV) = 61, r2 = 0.792, s = 25   

Excluded strong outliers: Formamide & SO2 ϵ {EV} 
 

δv
ppo(-0.5) 

 

                 d =  0.733 + 0.024Dv + 0.2110χ v + 1.4631χ vs - 0.022 SψE  + 0.148 Δ 

(0.06, 0.002, 0.02, 0.3, 0.002, 0.01)   

                  N(TR) = 45, r2 = 0.939, s = 0.07; N(+15EV) = 60, r2 = 0.914, s = 0.08 

                                              Excluded outliers: MeCl & MeOH ϵ {EV}  

δv
po(-0.5) 

 

 

                              γ = 8.683 + 0.386Dv + 397.61χ vs + 151.9TψI  - 502.41ψIs + 3.347 Δ 

(2.3, 0.05, 57, 36, 90, 0.7) 

N(TR)  = 29, r2 = 0.835, s = 3.1; N(+10EV) = 39, r2 = 0.792, s = 3.1  

                                       Excluded outlier: formamide, nitromethane ϵ {EV}  

δv
ppo(0.5) 

 

                 FP = 387.1 + 26.99HM - 94.38HMI + 33.03GME + 114.5UMI - 83.10HoME 

(26, 6.2, 12, 5.2, 13, 11) 

                    N(TR) = 29, r2 = 0.829, s = 16; N(+11EV)= 40, r2 = 0.764, s = 17  

                                               Excluded outliers: Acetone ϵ {EV} 

 
 

δv
po(-0.5) 

 

              η = - 0.216 + 0.0011χ 
d + 0.486 1ψI + 2.20∙10-5 1ψId  - 3.83∙10-6 0ψEd + 0.098 Σ 

(0.2, 0.0003, 0.1, 7∙10-6, 10-7, 0.01) 

                         N(TR) = 28, r2 = 0.969, s = 0.4; N(+10EV) = 38, r2 = 0.939, s = 0.4  

                                                 Excluded outlier: MeOH ϵ {EV} 
δv

ppo(1) 

 

                     El = 0.018 + 0.181∙10-3 1χ d - 0.675∙10-6 1χ vd  + 0.003 0ψId  + 140.8 TΣ/M 

(0.02, 0.00006,  10-7, 0.0004, 14 ) 

N(TR) = 15, r2 = 0.934, s = 0.06; N(+3EV) = 18, r2 = 0.931, s = 0.06  

pentane and THF ϵ{TR} and excluded out.:Me-OH & Acetonitrile ϵ {EV} 

 

*Me = Methyl, THF = tetrahydrofuran, Et = Ethyl. 
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Table 5. ANN results for the set of descriptors of Table 4 with one hidden neuron. 1st column: the δv-type and 

the Ntr value; 2nd column: ANN-MLP architecture, the abbreviation for the activation functions for the hidden 

and output layers, the number of epochs, and training and test errors; 3rd column: input indices, their 

sensitivity value, and statistical parameters for the training plus test, a[N(aTR + bTE)], and plus the evaluation 

compounds: [N(aTR + bTE + cEV)].  

δv-type ANN-MLP 

 

                                (Variables)  Property  

  

δv
po(1) 

Ntr = 105 

6 - 1 - 1 

(e, l)* 

41 

0.005/0.003 

                              (0 χ, D v,  0 ψ I, 
1 ψ I, 

0 ψ E, TΣ/M)   Tb 

                            (30.67, 34.22, 41.80, 1.111, 15.76, 2.291) 

 N(36TR + 9TE) = 45, r2 = 0.850, s = 21; N(+ 16EV) =  61 r2 = 0.820, s = 23 

                            Excluded outlier: dMe-Ether & SO2 ϵ {EV}   

 

δv
ppo(-0.5) 

Ntr = 103 

5 - 1 - 1 

(t, t) 

33 

0.002/0.0006 

                                        (D v, 0 χ v, 1 χ vs, 
S ψ E, Δ)   d 

                                     (17.99, 8.653, 2.953, 41.31, 12.37)  

       N(36TR + 9TE) = 45, r2 = 0.956, s = 0.1; N(+ 15EV) = 60, r2 = 0.930, s = 0.1 

                                Excluded outliers: MeCl & MeOH ϵ {EV}  

δv
po(- 0.5) 

Ntr = 105 

5 - 1 - 1 

(e, t) 

27 

0.005/0.006 

                                        (D v, 1χ v s, 
T ψ I, 

1 ψ Is, Δ)  γ 

                                     (9.086, 34.48, 34.44, 45.45, 2.328)  

N(22TR + 7TE)  = 29, r2 = 0.841, s = 2.8;  N(+ 10EV) = 39, r2 = 0.705, s = 3.7 

                            Excluded outlier: nitromethane & formamide ϵ {EV} 

δv
ppo(0.5) 

Ntr = 103 

5 - 1 - 1 

(e, e) 

39 

0.009/0.009 

 

                                (HM, HMI, 
GME, 

UMI, 
HoME)  FP 

                      (445.1, 1.44·106, 2.65·106, 4.22·106, 17·106)  

N(22TR + 7TE) = 29,  r2 = 0.801, s = 16; N(+ 11EV) = 40, r2 = 0.769, s = 16 

                              Excluded outliers: 2Me-Butane ϵ {EV} 

 

δv
po(- 0.5) 

Ntr = 103 

5 - 1 - 1 

(e, l) 

17 

0.0006/0.0004 

                                      (1χ d, 1ψ I, 
1ψ Id, 0ψ Ed, Σ)  η 

                                    (1.982, 1.509, 1.060, 12.04, 3.824) 

N(22TR + 6TE)  = 28, r2 = 0.972, s = 0.3;  N(+ 10EV) = 38, r2 = 0.942, s = 0.4 

                                Excluded outlier: MeOH ϵ {EV} 

δv
ppo(1) 

Ntr = 103 

 

4 - 1 - 1  

(i, i) 

20 

0.002/0.0003 

 

                                      (AM v, HME,
 GME, 

StMI)   El 

                                      (52.93, 3072, 3020, 27.81)  

  N(12TR + 3TE) = 15,  r2 = 0.966, s = 0.04; N(+ 3EV) = 18, r2 = 0.955, s = 0.04 

        pentane and THF ϵ {TR}; Excluded. outlier.: MeOH & 2-propanol ϵ {EV} 

 * Activation functions: e = exponential, i = identity, l = logistic, t = tanh. s = sin.  
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Table 6. ANN - MLP results for the set of descriptors of Table 4 with externally imposed number of hidden 

neurons. 1st column: the δv-type and the Ntr value; 2nd column: ANN-MLP architecture, the abbreviation for the 

activation functions for the hidden and output layers, the number of epochs, and training and test errors; 3rd 

column: input indices, their sensitivity value, and statistical parameters for the training plus test, a[N(aTR + 

bTE)], and plus the evaluation compounds: [N(aTR + bTE + cEV)].  

δv-type ANN-MLP 

 

                                    (Variables)  Property  

  

δv
po(1)  

Ntr = 103 

6 - 2 - 1 

(t, t) 

73 

0.004/0.002 

                                   (0 χ, D v,  0 ψ I, 
1 ψ I, 

0 ψ E, TΣ/M)   Tb 

                               (18.17, 50.17, 138.5, 6.414, 93.87, 4.392) 

         N(36TR + 9TE) = 45, r2 = 0.891, s = 17; N(+ 16EV) =  61 r2 = 0.871, s = 20 

                                 Excluded outlier: SO2 & MeOH ϵ {EV}  

 

δv
ppo(- 0.5) 

Ntr = 103  

5 - 4 - 1 

(t, l) 

58 

0.0004/0.000

1 

                                          (D v, 0 χ v, 1 χ v
s, 

S ψ E, Δ)   d 

                                         (41.54, 29.37, 9.057, 47.73, 29.59) 

         N(36TR + 9TE) = 45, r2 = 0.990, s = 0.04; N(+ 15EV) = 60, r2 = 0.966, s = 0.1 

                               Excluded outliers: formamide & MeCl ϵ {EV}.  

δv
po(- 0.5) 

Ntr = 105  

5 - 4 - 1 

(t, e) 

36 

0.004/0.002 

                                            (D v, 1χ v s, 
T ψ I, 

1 ψ Is, Δ)  γ 

                                           (1285, 21.98, 2093, 62687, 5.853)  

  N(22TR + 7TE)  = 29, r2 = 0.908, s = 2.1;  N(+ 10EV) = 39, r2 = 0.871, s = 2.4 

                             Excluded outlier: nitromethane & formamide ϵ {EV} 

δv
po(1)  

Ntr = 105 

5 - 5 - 1 

(t, l) 

35 

0.003/0.009 

 

                                             (D, 1ψ Is, 
0ψ Ed,  Δ, TΣ/M)  FP 

                                            (8.683, 2.965, 1.212, 5.431, 5.439)  

        N(22TR + 7TE) = 29,  r2 = 0.919, s = 10; N(+ 11EV) = 40, r2 = 0.860, s = 13 

                                        Excluded outliers: nitromethane ϵ {EV}  

 

 δv
po(- 0.5) 

Ntr = 105  

5 - 3 - 1 

(e, l) 

35 

0.0003/0.000

3 

                                               (1χ d, 1ψ I, 
1ψ Id, 0ψ Ed, Σ)  η 

                                             (4.609, 5.914, 1.286, 15.86, 6.803) 

      N(22TR + 6TE)  = 28, r2 = 0.982, s = 0.3;  N(+ 10EV) = 38, r2 = 0.975, s = 0.3 

                                           Excluded outlier: 2-butanone ϵ {EV} 

δv
ppo(1) 

Ntr = 103  

 

4 - 2 - 1  

(t, s) 

22 

0.001/0.003 

 

                                           (AM v, HME,
 GME, 

StMI)   El 

                                              (80.08, 3075, 2819, 34.79)  

     N(12TR + 3TE) = 15,  r2 = 0.973, s = 0.03; N(+ 3EV) = 18, r2 = 0.976, s = 0.03 

        pentane and THF ϵ {TR}; excluded outliers: acetonitrile & 2-propanol ϵ {EV} 
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Table 7. ANN - MLP results with the number of hidden neurons chosen by Statistica 8. Descriptors are those of 

Table 4. 1st column: the δv-type and the Ntr value; 2nd column: ANN-MLP architecture, the abbreviation for the 

activation functions for the hidden and output layers, the number of epochs, and training and test errors; 3rd 

column: input indices, their sensitivity value, and statistical parameters for the training plus test, a[N(aTR + 

bTE)], and plus the evaluation compounds: [N(aTR + bTE + cEV)].  

δv (type) ANN-MLP 

 

                                         (Variables)  Property  

  

δv
po(1)  

Ntr = 103 

6 - 11 - 1 

(t, t) 

39 

0.005/0.005 

                               (0 χ, D v,  0 ψ I, 
1 ψ I, 

0 ψ E, TΣ/M)   Tb 

                             (17.98, 45.18, 106.2, 2.556, 72.23, 3.579) 

N(36TR + 9TE) = 45, r2 = 0.846, s = 21; N(+ 16EV) =  61 r2 = 0.826, s = 24 

                Excluded outlier: MeOH & SO2  ϵ {EV}  

 

δv
ppo(- 0.5)  

Ntr = 105 

5 - 8 - 1 

(t, l) 

18 

0.001/0.001 

                                        (D v, 0 χ v, 1 χ vs, 
S ψ E, Δ)   d 

                                     (20.47, 8.414, 4.606, 49.56, 19.77) 

 N(36TR + 9TE) = 45, r2 = 0.970, s = 0.05; N(+ 15EV) = 60, r2 = 0.938, s = 0.07 

                               Excluded  outliers: MeCl & MeOH ϵ {EV}  

δv
po(- 0.5)  

Ntr = 103 

5 - 10 - 1 

(l, s) 

42 

0.004/0.002 

                                       (D v, 1χ v s, 
T ψ I, 

1 ψ Is, Δ)  γ 

                                   (18.16, 81.96, 74.19, 173.8, 2.809)  

N(22TR + 7TE)  = 29, r2 = 0.890, s = 2.3;  N(+ 10EV) = 39, r2 = 0.851, s = 2.6 

                      Excluded outlier: nitromethane & formamide ϵ {EV} 

δv
po(1)  

 Ntr = 105 

5 - 4 - 1 

(l, l) 

81 

0.003/0.01 

 

                                      (D, 1ψ Is, 
0ψ Ed,  Δ, TΣ/M)  FP 

                                   (6.663, 2.542, 1.105, 4.616, 3.220)  

 N(22TR + 7TE) = 29,  r2 = 0.899, s = 11; N(+ 11EV) = 40, r2 = 0.840, s = 14 

                               Excluded  outliers: 2Me-Butane ϵ {EV} 

 

δv
po(- 0.5)  

Ntr = 103 

5 - 3 - 1 

(e, l) 

26 

0.0003/0.0003 

                                           (1χ d, 1ψ I, 
1ψ Id, 0ψ Ed, Σ)  η 

                                        (6.071, 4.640, 1.164, 14.16, 7.089)  

    N(22TR + 6TE)  = 28, r2 = 0.981, s = 0.3;  N(+ 10EV) = 38, r2 = 0.974, s = 0.3 

                                       Excluded outlier: 2-butanone ϵ {EV} 

δv
ppo(1)  

Ntr = 105 

4 - 5 - 1  

(t, t) 

49 

0.002/0.001 

 

                                        (AM v, HME,
 GME, 

StMI)   El 

                                        (66.31, 355.9, 331.7, 27.55)  

 N(12TR + 3TE) = 15,  r2 = 0.973, s = 0.03; N(+ 3EV) = 18, r2 = 0.973, s = 0.03 

     pentane and THF ϵ {TR} and excluded MeOH & 2-propanol ϵ {EV} 
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Table 8. ANN results for the set of descriptors of Table 4 with only one hidden neuron but where either one or 

two indices have been left out, usually, those with lowest sensitivity values in Table 5. For the structure of this 

table see Table 5. Only satisfactory results are shown here.  

δv-type ANN-MLP 

 

                                (Variables)  Property  

  

δv
po(1) 

Ntr = 105 

4 - 1 - 1 

(e, e) 

25 

0.008/0.008 

                                      (0 χ, D v,  0 ψ I, 
0 ψ E)   Tb 

                                 (816.3, 863.6, 110900, 7016972) 

      N(36TR + 9TE) = 45, r2 = 0.758, s = 26; N(+ 16EV) =  61 r2 = 0.714, s = 29 

                            Excluded outlier: dMe-Ether & SO2 ϵ {EV}   

 

δv
ppo(-0.5) 

Ntr = 103 

4 - 1 - 1 

(l, t) 

17 

0.004/0.002 

                                            (D v, 0 χ v, S ψ E, Δ)   d 

                                          (11.01, 7.934, 28.40, 4.905) 

       N(36TR + 9TE) = 45, r2 = 0.917, s = 0.1; N(+ 15EV) = 60, r2 = 0.895, s = 0.1 

                             Excluded outliers: SO2 & Formamide ϵ {EV}  

δv
ppo(0.5) 

Ntr = 105 

4 - 1 - 1 

(i, l) 

26 

0.01/0.02 

 

                                         (HMI, 
GME, 

UMI, 
HoME)  FP 

                                         (10.65, 14.68, 15.90, 12.16)  

        N(22TR + 7TE) = 29,  r2 = 0.719, s = 19; N(+ 11EV) = 40, r2 = 0.702, s = 18 

                                 Excluded outliers: 2Me-Butane ϵ {EV} 

 

δv
po(- 0.5) 

Ntr = 103 

3 - 1 - 1 

(t, i) 

67 

0.0007/0.0003 

                                             (1χ d, 0ψ Ed, Σ)  η 

                                           (1.603, 15.54, 10.70) 

N(22TR + 6TE)  = 28, r2 = 0.965, s = 0.4;  N(+ 10EV) = 38, r2 = 0.917, s = 0.5 

                                Excluded outlier: MeOH ϵ {EV} 
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Table 9. Statistical, N/r2(2nd decimal figure)/s, results for the six properties from Tables 4 to 7. 2nd column: MLS, 

results, 3rd column: ANN with one hidden neuron (ANN 1HN) results, 4th column: ANN with externally chosen 

number of hidden neurons (ANN enHN) results, 5th column: ANN with software chosen number of hidden 

neurons (ANN snHN) results. First line shows the statistical results for the training (MLS) and train plus test 

(ANN) compounds, the second line shows the overall statistical results inclusive the evaluated compounds. M 

(bold and italics) stands for MMCIs (otherwise they are MCIs). In the last two columns are also given the 

number of hidden neurons (second line, italics and bold). 

P MLS (Table 4) ANN 1HN (Table 5) ANN enHN (Table 6) ANN snHN (Table 7) 

Tb 
45 / 0.82 / 22 

61/ 0.79 / 25 

45 / 0.85 / 21 

61 / 82 / 23 

45 / 0.89 / 17 

2 / 61 / 87 / 20 

45 / 0.85 / 21 

11 / 61 / 0.83 / 24 

d 
45/ 0.94 / 0.07 

60 / 0.91 / 0.08 

45 / 0.96 / 0.1 

60/ 0.93 / 0.1 

45 / 0.99 / 0.04 

4 / 60 / 0.97 / 0.1 

45 / 0.97 / 0.05 

8 / 60 / / 0.94 / 0.07 

γ 
29 / 0.84 / 3.1 

39 / 0.79 / 3.1 

29 / 0.84 / 2.8 

39 / 0.71 / 3.7 

29 / 0.91 / 2.1  

4 / 39 / 0.87 / 2.4 

29 / 0.89 / 2.3 

10 / 39 / 0.85 / 2.6 

FP 
M / 29 / 0.83 / 16 

40 / 0.76 / 17 

M / 29 / 0.80 / 16 

40 / 0.77 / 16 

29 / 0.92 / 10 

5 / 40 / 0.86 / 13 

29 / 0.90 / 11 

4 / 40 / 0.84 / 14 

η 
28 / 0.97 / 0.4 

38 / 0.94 / 0.4 

28 / 0.97 / 0.3 

38 / 0.94 / 0.4 

28 / 0.98 / 0.3 

3 / 38 / 0.98 / 0.3 

28 / 0.98 / 0.3 

 3/ 38 / 0.97 / 0.3 

El 
15 / 0.93 / 0.06 

18 / 0.93 / 0.06 

M / 15 / 0.97 / 0.04  

18 / 0.96 / 0.04 

M / 15 / 0.97 / 0.03 

2 / 18 / 0.98 / 0.03 

M / 15 / 0.97 / 0.03 

5 / 18 / 0.97 / 0.03 

 

Conclusions: 

 

The first interesting result of the present ANN computations is that they prefer MCIs instead of 

MMCIs, especially with properties with relatively large number of points. In fact, only El, with 

minimal number of points is advantageously described by MMCI when ANN with more than one 

hidden neuron is used. The second result being that it is better to impose from outside the number of 

hidden neurons. The third result being that it is better to run ANNs using quite different numbers of 

networks to train, Ntr. The fourth and the more interesting result being that normally ANN improve 

over the MLS calculations, but also that in many cases this improvement is not striking. 

It should be remembered that MLS is anyway used to derive the best set of descriptors that are passed 

over to the ANNs, and that its statistical results are definitive, i.e., no matter how many times you 

repeat the calculations with the same indices you will obtain always the same results at every statistical 

level. ANN results are instead unsystematic and non-reproducible as the weights of the ANN 
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computations start from random values and the minimization procedure usually ends up with different 

values from run to run. This fuzzy character has nevertheless a positive side as if ANN computations 

are run over and over again the probability to end up with a quite good result is increasing. ANN results 

obtained with one hidden neuron either with the full set of descriptors (Table 5), or with a reduced set 

of descriptors, like in Table 8, if on one side they confirm the validity of the MLS calculations on the 

other side they leave open the possibility that somewhere there are ANN calculations that improve over 

them.  

Anyway, (i) before throwing away a bad model for the training plus test compounds with ANN 

computations think it twice because they could hide a very good model for the evaluated compounds, 

and (ii) do not throw away the hydrogen atoms in calculations with MCIs or MMCIs as in many cases 

they are of good help.  
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