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Abstract:  

Describing open-domain video with natural language sequence is a major challenge for computer 

vision. In this paper, we investigate how to use temporal information and learn linguistic knowledge for 

video description. Traditional convolutional neural networks (CNN) can only learn powerful spatial features 

in the videos, but they ignored underlying temporal features. To solve this problem, we extract SIFT flow 

features to get temporal information. Sequence generator of recent work are solely trained on text from 

video description datasets, so the sequence generated tend to show linguistic irregularities associated with a 

restricted language model and small vocabulary. For this, we transfer knowledge from large text corpora and 

employ word2vec to be the word representation. The experimental results have demonstrated that our model 

outperforms related work.  

Conclusions 

In this paper, we propose a model which contains a visual extractor and a sequence generator. First, 

SIFT flow features are extracted to get temporal information. Through shallow fusion with CNN feature, we 

can get video visual feature representation. Second, we consider two stacked LSTMs to generate natural 

language sequence with variable length. In order to integrate linguistic information into the sequence 

generator, transferring knowledge from large text corpora can generate natural language grammatically. 

Besides, the experiments show that word2vec is a comparatively better word representation than “one-hot” 

vector. We evaluate our model on Youtube2Text dataset for METEOR metric. The experiments show that 

our model can achieve higher METEOR scores than other methods proposed recently. In the future, we 

would like to exploit a more efficient visual extractor, which contains visual attention mechanism. 
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