Antimicrobial peptides of *Lactobacillus plantarum* UTNCys3.4 strain isolated from native fruits of Ecuadorian Amazonia inhibit the growth of foodborne pathogens

Gabriela N. Tenea*, Karina Garzón, Alejandro Barrigas, Clara Ortega

The Technical University of the North, Faculty of Engineering in Agricultural and Environmental Sciences, Ibarra, Ecuador; *Author to whom correspondence should be addressed: gntenea@utn.edu.ec

Outline

- Introduction
- Aiming and Workflow
- Results and Discussions
- Conclusions
- Acknowledgments

Introduction

- Lactic acid bacteria (LAB) are known as the most versatile microorganisms used as probiotic or functional foods.
 - Ubiquitous gram positive, catalase-negative, non-sporulating, aero tolerant
 - Fermentative organisms that produce lactic acid as the major end product of carbohydrate metabolism
 - Among LAB species, several are producing antimicrobial substances.

Introduction

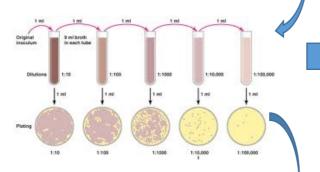
- LAB are known as inhibiting invading Gram-negative bacteria due to the presence of several active components such as short-chain fatty acids or hydrogen peroxide, proteins such bacteriocin-like inhibitory substances (Smith et al. 2007).
 - Bacteriocins
 - Proteinaceous antibacterial substances
 - Ribosomally synthesized
- In the recent years, lactobacillus species were investigated to select strains with grater antimicrobial capacity to be used in biopreservation of food products.

Introduction

- In Ecuador, the presence of pathogens in food was reported (Ministry of Public Health, Ec, 2013).
- Due to defective storage condition, poor manufacturing practices, most artisanal typical dishes (i.e. mote, chicha, chocho) contains a significant number of pathogenic and spoilage microorganism, therefore the risk of developing diseases is elevated; so, currently the authorities are implementing new strategies to reduce the contamination by pathogenic microorganism.
- Accordingly, the research was centered on identification of natural ingredients to be used in preservation.

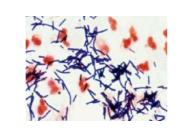
What we are interested for?

- According to the new territorial redistribution several zones of Ecuador known as undeveloped natural areas were included in the governmental policy as important resources to be considered.
- In this context our current work relates to isolation, characterization and evaluation the probiotic capacity of lactic acid bacteria isolated from native un-exploited ecological niches originated from Ecuador.
- Previously, we identify several LAB strains of fruits collected from rainforest of Santo Domingo de Los Tsachilas Provence, which showed probiotic potential (Benavidez et al., 2016)


Aiming of the study

- To isolate, identify and characterized novel bacteriocinogenic lactic acid bacteria of native microbiota of Ecuador.
- We proposed large scale experiments to search for lactic acid bacteria with potential probiotic capacity in Amazon, Sucumbios Provence.

Solanum stramonifolium


1. Samples collection: native fruits, flowers, soil

2. **Strain selected** from MRS plates, purification of single colonies

Workflow

3. Morphological and Biochemical Studies, wellagar diffusion assay,

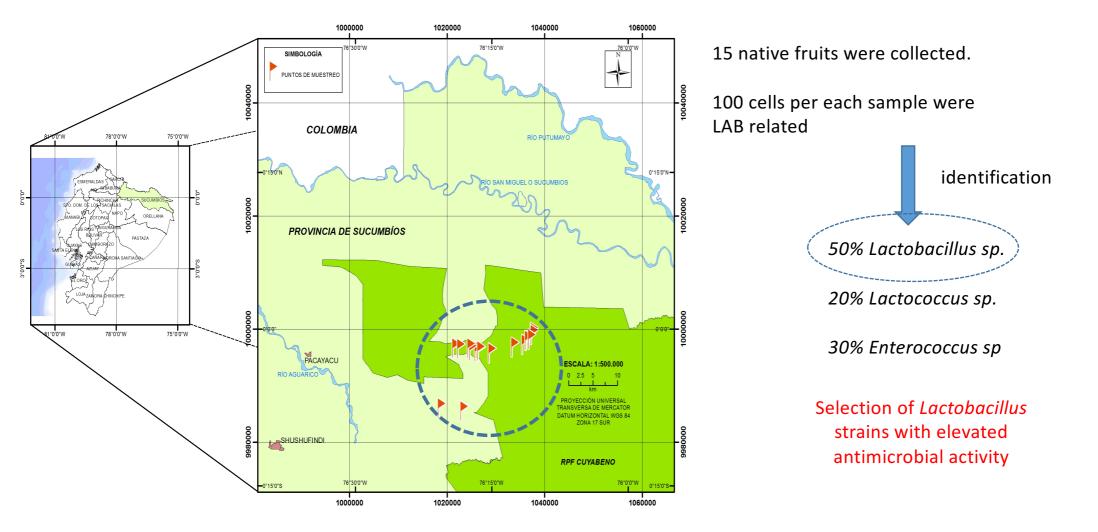
5. **Spectrum of activity** against food pathogens: E.coli, Salmonella, Shigella

- 6. Antimicrobial components characterization
- Enzymatic sensibility
- pH, temperature stability

- 7. Bacteriocin production
- Kinetics of bacteriocin production
- Medium optimization

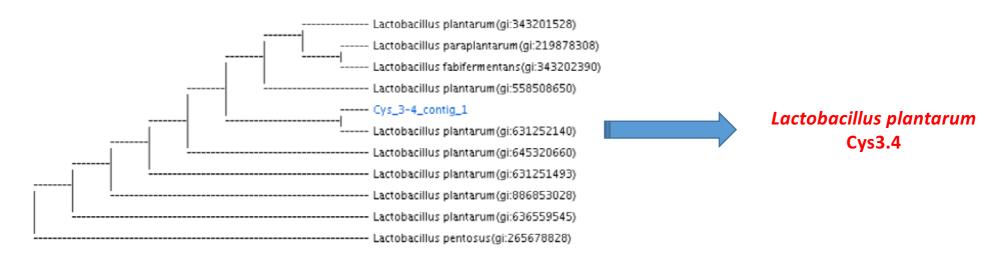
Latobacillus plantarum (gl:55850650)
Cys_3-4_contg_1
Latobacillus plantarum (gl:631252140)
Latobacillus plantarum (gl:631252140)
Latobacillus plantarum (gl:631251493)
Latobacillus plantarum (gl:6325545)
Latobacillus plantarum (gl:63559555)
Latobacillus plantarum (gl:63559555)
Latobacillus plantarum (gl:63559565)
Latobacillus plantarum (gl:63559565)

825 830 835 840 845 850 855 860 865 870 875

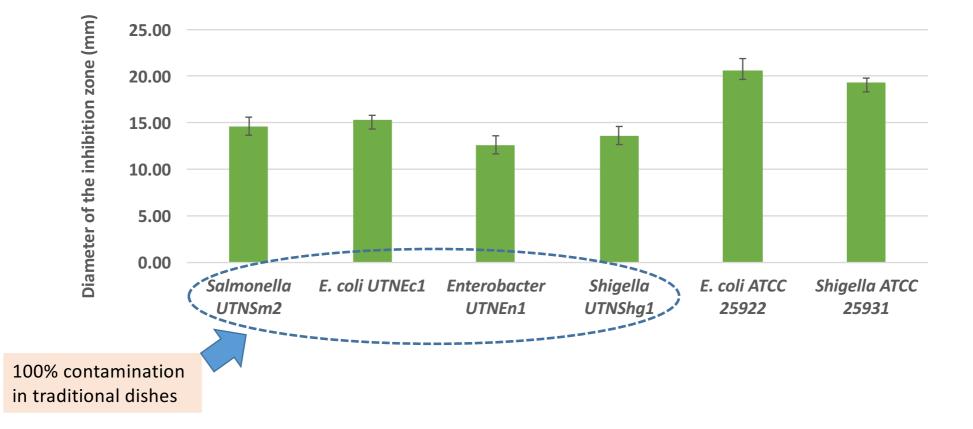

TAAGTGTTGGAGGGTTTCCGCCCTTCAGTGCTGCAGCTAACGCATTAAGCATTC

Lactobacillus plantarum(gi:343201528)

Lactobacillus paraplantarum (gi:219878308) Lactobacillus fabifermentans (gi:343202390)


4. 16s rRNA sequencing (custom service, Macrogen, Inc. Korea)

Results and discussions

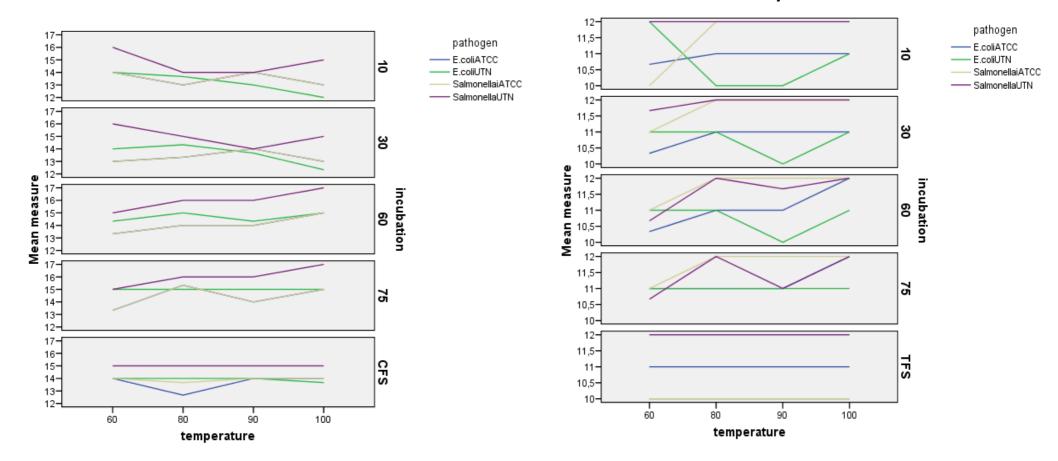


Identification of Cys3.4 strain

- API50CHL carbohydrate profile and 16S rRNA sequencing demonstrated that the isolated was *L plantarum* assigned and Cys3.4 strain with 99% identity.
- The strain was deposited at GenBank with accession number KY110685.

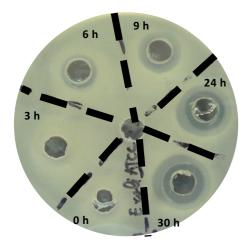
Broad spectrum of antimicrobial activity of Cys3.4 strain

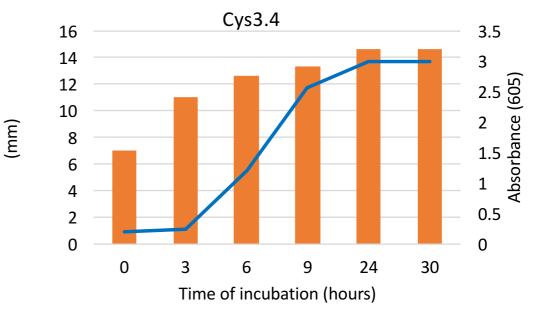
Enzyme, temperature and pH sensibility


Treatment	Activity (AU/ml)	Component	
	E. coli ATCC25922		
Enzymes (1mg/ml)			
NCFS + Proteinase K	-	Proteinaceous	
NCFS + Trypsin	-	Proteinaceous	
NCFS + Pepsin	-	Proteinaceous	
NCFS + Lysozyme	6400 AU/ml	Active/ non-lipid	
NCFS + Lipase	6400 AU/ml	Active/ non-lipid and carbohydrate moiety	
NCFS	3200 AU/ml	Active	
TFS	6400 AU/ml	Active	
рН			
2.0	12800 AU/ml	Active	
4.0	6400 AU/ml	Active	
6.0	3200 AU/ml	Active	
10.0	800 AU/ml	Active	
Heat*			
60°C	6400 AU/ml	Active	
80°C	6400 AU/ml	Active	
90°C	6400 AU/ml	Active	
100°C	6400 AU/ml	Active	
121°C	3200 AU/ml	Active	
CFS	6400 AU/ml	Active	

Results are means of 3 measurements ± standard deviation of three replicates. CFScrude fluid supernatant; TFS-neutralized CFS (pH 6.0); NCFS: neutralized CFS and hydrogen peroxide eliminated.

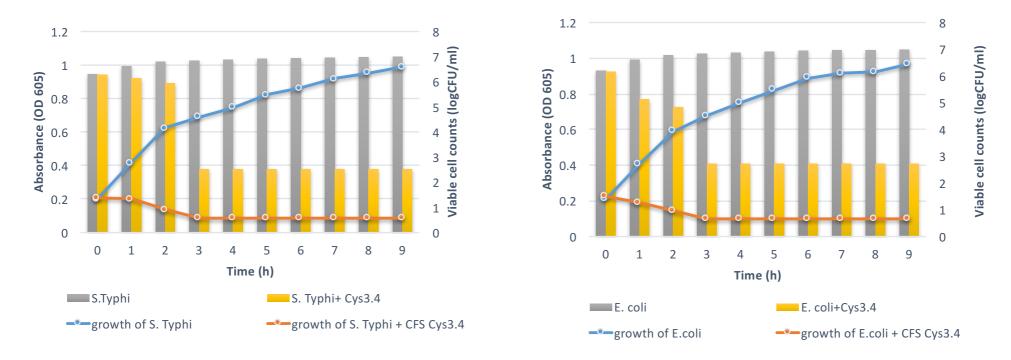
Heat stability


CFS Cys3.4



Bacteriocin production

Diameter of the inhibition zone



Antimicrobial activity against *E.coli* ATCC25922 with time of *L. plantarum* Cys3.4 growth

Bacteriocins production of L. plantarum Cys3.4 with time

Effect of BLIS produced Cys3.4 strain on indicator pathogens

Effect of bacteriocin-derived Cys5-4 strain on growth and viability of the indicator cells. A. *E. coli* UTNEc1; B. *Salmonella* UTNSm2 (bars, represent the viable cell counts with and without bacteriocin Cys5-4, lines-growth registered as optical density at 605).

Effect of pH, temperature and chemicals in adsorption cellular

Adsorption cellular of Cys3.4 (%)			
Treatment	E. coli Ec1	Salmonella Sm2	
Effect of pH			
2.0	90.38	87.87	
4.0	94.47	95.3	
6.0	96	95.9	
Effect of temperature (°C)			
4	74	69	
15	98	87	
30	95	100	
37	91	91	
45	94	95	
Effect of chemicals (1%), pH 6.5			
NaCl	92	88	
Triton X-100	99	71	
EDTA	25	41	
SDS	55	52	
CFS	94	94	

Conclusions

- We identified *L. plantarum* Cys3.4 strain with grater capacity to suppress several pathogenic bacteria.
- The inhibitory activity *in vitro* was highly related with the presence of bacteriocin-like molecules and depends at least in part, by lowering pH and/ or the presence of organic acids.
- We showed that the bacteriocin producing Cys3.4 strains has a bacteriocidal mode of action.
- We shall further test the biopreservative potential *in vivo*.

Acknowledgements

- The work was supported by Technical University of the North, Grant No. 01791.
- Secretary for Higher Education, Science, Technology and Innovation, Prometeo Project.