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Abstract:  
 A number of reinforcement learning algorithms have been developed that are guaranteed to converge to the optimal 

solution when used with lookup tables. However, these algorithms can easily become unstable when implemented directly 

with function approximation. We proposed an efficient Q-learning algorithm based on function approximation (FARQ), 

which not only can guarantee the convergence but also has a fast learning rate. The algorithm performs gradient decent on 

mean squared Bellman residual and adopts a new rule to update value function parameter vector. In addition, the algorithm 

introduces a new factor, named forgotten factor to accelerate the learning rate of the algorithm. Applying the proposed 

algorithm, Q-learning, and Actor-Critic algorithm to the traditional Grid World and the pole balancing problems, the 

experimental results show that FARQ algorithm has the faster convergence rate and better convergence performance. 
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1 INTRODUCTION 
Reinforcement Learning (RL) [1] is considered as a kind of Machine Learning method, which can be applied to handle 

problems where the process model is not available in advance. The agent explores an environment and through the use of a 

reward signal to maximize the expected cumulative rewards to achieve a certain goal [2]. The traditional RL algorithms 

have been guaranteed to converge to the optimal solution, which use the lookup tables to store the value functions for 

problems with discrete state and action spaces [3]. The lookup table is generally applied to the problems with small-scale 

continuous state space and action spaces, but when dealing with continuous actions, or action space with large discrete sets, 

the algorithms will suffer from slow learning rate or even cannot converge. This problem is named the curse of 

dimensionality [4], which leads to the increasing computational complexity exponentially with the number of dimensions. 

As a result, designing a more efficient algorithm to solve the problem of slow learning rate and unstable converge will be of 

great importance in RL. 

RL algorithm with function approximation is a new research hotpot in Machine Learning. In the learning process of 

algorithms with function approximation, a set of parameters were adopted to describe the state-value function or action-

value function [5-6]. The agent chooses the optimal action according to the approximation, and the learning experiences can 

be generalized from the subsets to the whole state space. In the 1990s, Tsitsiklis et al, applied function approximation to RL 

algorithms, and the stability and convergence of the algorithms were proved both theoretically and experimentally [6]. 
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However, the Q-learning based on function approximation cannot converge, because the target policy and the behavior 

policy are inconsistent to make the different distribution of sample data [7]. Gordon attempted to improve the Q-learning 

algorithm, and the proposed algorithm can converge steadily, but the performance is not ideal [8]. Hasselt adopted two 

function approximations to eliminate the overestimations of action values, and proposed Double Q-learning [9]. Nowadays, 

Q-learning has been used to find solutions on many problems [10-12] and was an inspiration to similar algorithms, such as 

dual iterative Q-learning [13], Policy Gradient and Q-learning [14], and hybrid Q-learning [15]. These algorithms have 

mostly been proposed in order to speed up convergence rates compared to the original Q-learning algorithm.  

In this paper, we proposed a Residual Q-learning algorithm with Function Approximation (FARQ) in order to speed up 

convergence rate and improve the stability of the original Q-learning algorithm. The algorithm adopts gradient-descent 

method to adjust the parameter vector and use function approximation method to update function parameter vector. It is 

worth noting that, the Q-learning algorithm with function approximation does not necessarily guarantee convergence. To 

avoid this problem, we consider Bellman residual as a good choice to guarantee convergence of algorithm, and the new 

algorithm introduces a new rule to update value function parameter vectors. Applying the proposed algorithm, Q-learning, 

and Actor-Critic algorithm to the traditional Grid World and the pole balancing problems, the experimental results show 

that FARQ algorithm has better convergence comparing with the original Q-learning algorithm and has faster learning rate 

comparing with the traditional algorithms based on lookup tables. In addition, FARQ has better robustness to the growth of 

the state space. This paper is organized as follows: Section 2 describes MDPs and the original Q-learning algorithm. The 

FARQ algorithm is presented in Section 3. Experimental results are analyzed and discussed in Section 4. In Section 5, we 

make a final conclusion and the future topics. 

2 RELATED LITERATURE 

2.1 Markov decision process 
In RL, Markov decision process (MDP) can be used to model the problem. The learning task satisfying the Markov 

property can be modeled by a 4-tuples ( , , , )M X U R T , where  

 X is a set of system states; 

 U is a set of system actions; 

 R is the reward function, where ( , , ')R x u x is the reward obtained from the environment when ending up at state 'x

after executing action u at state x ; 

 T is the state transition function, where '( , , )T x u x is the probability of ending up at state 'x after executing action u

at state x . 

The ultimate goal of RL is to learn a policy, which is a mapping from state-action pair to the probability of taking the 

action at the state. According to the output of the policy is an action or an action choice probability, the policy usually can 

be divided into deterministic policy and random policy, where the deterministic policy is represented as :h X U , a map 

from a state to an action; and the random policy is represented as : [0,1]h X U  , a map from a state-action pair to a 

probability. For example, ( )u h x is an action that chosen at state x and ( | ) ( , )P u x h x u  is a probability of choosing action

u at state x . For convenience, we use h to represent a policy. We assume that time step is k , state is kx , and policy is h . 

Agent chooses action ku according to the current state and policy, and the state moves from kx  to 1kx  . In the learning 

process, algorithm repeats the above process, and agent can obtain the best policy through interacting with the environment 

to maximize the cumulative rewards. 

In order to evaluate how good the policy is, the value function is proposed in RL. The value function is divided into the 

state value function ( )kV x  and the action value function ( , )kQ x u , where ( )kV x represents the expected return at state x under 

a policy h and ( , )kQ x u represents the expected return at the state action pair ( , )x u under a policy h . ( )kV x  and ( , )kQ x u are 

the unique solutions to their Bellman equation, which are denoted by :  

 '

* ' * '( ) max { ( , ) ( , , ) ( )}u U x X
V x R x u T x u x V x 

    (1) 

 ' '

' ' ' ' '( , ) ( , ) ( , , ) ( , ) ( , )h h

x X u U
Q x u R x u T x u x h x u Q x u

 
     (2) 

Where 0 1  is the discount factor; the best policy h can maximize the cumulative rewards, and the correspond 

deformation of the optimal value function * ( )V x and * ( , )Q x u are shown in equation (3) and equation (4).  

 '

* ' * '( ) max { ( , ) ( , , ) ( )}u U x X
V x R x u T x u x V x 

     
     (3) 

 ''

* ' * ' '( , ) ( , ) ( , , ){max ( , )}
u Ux X

Q x u R x u T x u x Q x u


     (4) 

It is worth noting that equation (3) and equation (4) are also called Bellman optimality equation.  

2.2 Q-learning algorithm 
Temporal difference learning (TD-Learning) is the central and novel ideas in RL, which was introduced by Sutton in 

1988 [4]. Q-learning is a special form of TD learning, and it belongs to the off-policy methods, because the learned action-
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value function of Q-learning can directly approximates the optimal action-value function, independent of the policy being 

followed. 

The Q-learning algorithm is given as follows [1]. 
 

Algorithm 1 Q-learning algorithm 

1: Initialize: ( , )Q x u  arbitrarily 

2:  Repeat (for each episode):  

3:        Initialize x   

4:        Repeat (for each step of episode): 

5:             Choose u  from x using policy derived from Q (e.g., greedy  ) 

6:             Take action u ,observe R ,
'x  

7:             '

' '( , ) ( , ) max ( , ) ( , )
u

Q x u Q x u R Q x u Q x u        

8:             
'x x  

9:        Until x is terminal  

3 Q-LEARNING WITH FUNCTION APPROXIMATION  

3.1 Approximation of Value Functions in FARQ Algorithm 

The traditional algorithms in RL often use lookup tables to store the value function. The agent chooses the action 

according to the return of the state action pair. For an MDP with a continuous state space or continuous action space, the 

updating of action-value function is shown as equation (5).  

 
( ', ')

( , ) max ( ', ')
x u

Q x u R Q x u


   (5) 

Where 'x is the next state of x , R is the immediate reward. The value of ( , )Q x u  is modified to be closer to the value of 

( ', ')R Q x u with a learning rate . At the end of the learning process, the equation (5) can guarantee to converge to the 

optimal action-value function under the condition that the learning rate  gradually decreases to zero. The lookup table is a 

very simple and effective method for problems with small state spaces, but it is not appropriate for the application with 

large state spaces. As a result, the lookup table was approximated by the function approximation, that is, the action-value 

function ( , )Q x u can be represented as a parameterized functional form with parameter vector  . The target output 

( ', ')R Q x u can be any approximation of ( , )Q x u , and all the parameter vectors would be adjusted through gradient 

descent, so the actual output ( , )Q x u could be closer to the target output ( ', ')R Q x u . The gradient descent update for 

action-value prediction of Q-learning is shown as equation (6). 

  
( ', ')

( , )
max ( ', ') ( , )

x u

Q x u
w R Q x u Q x u

w
 


   


  (6) 

A common approach is called batch updating [16], where every value function is updated only once by the sum of all 

increments. All the available experience is processed with the new value function to produce a new overall increment, and 

so on, until the value function converges. So the batch version of the equation (6) is shown as equation (7). 

  
( ', ')
max ( ', ') ( , ) ,d w

x u
x

w R Q x u Q x u Q x u           
                                (7) 

Where
( ', ')
max ( ', ') ( , )

x u
R Q x u Q x u  may be positive or negative．If it’s positive, it means that the value of 

( ', ')
max ( ', ')

x u
R Q x u

is greater than the value of ( , )Q x u , the actual value approximates to the desired value in the direction of growth, and the 

algorithm learns along the positive gradient direction, so the algorithm eventually diverges. If it’s negative, it means that the 

value of 
( ', ')
max ( ', ')

x u
R Q x u is less than the value of ( , )Q x u , the actual value approximates to the desired value in the 

direction of decrease, and the algorithm learns along the negative gradient direction, so the algorithm eventually converges. 

From the above description, we can know that Q-learning with function approximation cannot guarantee to converge 

definitely.  

In order to solve the above problem, we consider Bellman residual as a good choice to guarantee the convergence of 

the algorithm, and the new algorithm constructs a new rule to update parameter vector of the value function. The value of 

the action-value function is ( , )Q x u and the target output function for sample training is 
( ', ')
max ( ', ')

x u
R Q x u , the Bellman 

residual is defined as the mean square error of the two values, which is shown as equation (8). 
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( ', ')

1
max ( ', ') ( , )

x u
x

E R Q x u Q x u
n

   
  

  (8) 

For the problem with continuous action space, only when the action-value function is optimal, Bellman residual is 

zero. By applying the gradient descent method to equation (8) can guarantee E to converge to a local minimum. After the 

state x moves to 'x with an immediate reward R , the parameter update vector of Q-learning-Bellman is given by Equation 

(9).  

    
( ', ') ( ', ')
max ( ', ') , max ( ', ') ,

x u x u
w R Q x u Q x u Q x u Q x u

w w
  

              
 (9) 

The difference between Equation (9) and equation (6) is that equation (9) can guarantee the convergence of Bellman 

residual, but equation (6) cannot. As a result, applying function approximation to Q-learning algorithm, equation (9) can 

guarantee the algorithm to converge to the optimal solution. The batch version of the equation (9) is shown as equation (10). 

    
( ', ') ( ', ')
max ( ', ') , max ( ', ') ,rg w w

x u x u
w R Q x u Q x u Q x u Q x u           

      
 (10) 

Where w , rgw , the gradient of ( , )Q x u and ( ', ')Q x u are all vectors. When the step-size parameter  satisfies the stochastic 

approximation theory [1], rgw can guarantee E to converge to a local minimum. However, comparing with Q-learning 

algorithm, Q-learning-Bellman sometimes converges slowly. Take the star problem in Figure 1 as an example. Initialize 

5 0w  and 4 10w  . In the learning process from state 4 to state 5, Q-learning only decreases the value of 4w , but Q-

learning-Bellman increases the value of 5w while decreasing the value of 4w . Therefore, Q-learning-Bellman algorithm will 

lead the agent to learning in two directions, and the learning rate will become slower. 

 
Figure 1: The star problem 

Q-learning with function approximation has a faster learning rate but cannot guarantee the convergence and Q-learning 

with Bellman residual can guarantee the convergence but has a slower learning rate. Considering the two cases, we want to 

find an algorithm which not only can guarantee the convergence, but also has a faster learning rate. In figure 3, the dotted 

line represents the hyperplane that is perpendicular to the gradient, the above of dotted line represents the negative gradient 

direction which causes a decrease in E and the below of dotted line represents the positive gradient direction which causes 

an increase in E. The vector rgw is for Q-learning-Bellman, and the vector dw is for Q-learning. The update vector we 

need should be as close as possible to dw and still remain to the up of the dotted line, which can guarantee the convergence  

 
Figure 2: Action-value function parameter update vector for FARQ algorithm 
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of the algorithm and make the algorithm learn quickly, such as rw in figure 3. Therefore, the above two value function 

parameter vectors are combined with parameter  (a constant between 0 and 1), and the new parameter update vector rw  

is defined to be: 

  1r d rgw w w      (11) 

From the equation (11), we can know that the new vector can ensure the convergence of the algorithm with an appropriate

 , because rw causes E to decrease. In addition, the algorithm might have a fast learning rate, because rw lies as close 

as possible to dw . 

3.2 Selection of  in FARQ Algorithm 

An important question is how to choose an appropriate  in FARQ algorithm. A  of 1 is guaranteed to converge, 

and a  of 0 might be expected to learn quickly. However, both of them are not the best choice, and it requires to analysis 

by trial and error.  

When the two vectors rw and rgw are orthogonal, then the calculation of would be: 

 

0

((1 ) ) 0

r rg

d rg rg

d rg

d rg rg rg

w w

w w w

w w

w w w w

  

    

 
 

    

 (12) 

If the equation (12) yields a  outside of the range  0,1 , then the angel between the vectors rw and rgw is acute. From 

figure 3 we can see that the vector rw  changes to the above of the hyperplane, which means that the algorithm has 

converged, so a  of 0 should be used for maximum learning rate in the next learning. When the denominator of  is 0, 

then the value of  is 0, this means that E  is at a local minimum, or the vectors rw and rgw  point in the same direction. 

In either case, the algorithm can guarantee to converge. If the equation (12) yields a  between the range  0,1 , then the 

value of rgw is 0, which means that E has converged to a local minimum. Theoretically, E will decrease to zero as the 

number of iterations increasing, and the algorithm converges eventually. Therefore, any  above this value will ensure 

convergence. In summary, when  satisfies the range[0,1] , the FARS algorithm can guarantee to converge. 

       In order to make the angle between the two vectors rw and rgw  is acute, adding any small, positive constant k  to  . 

Therefore, FARS algorithm should firstly calculate the numerator and the denominator, secondly check whether the 

denominator is zero. If the denominator is zero, then  is 0. If it is not, the algorithm should evaluate equation (12), 

including the addition of a small constant k , then check whether the resulting  lies in the range  0,1 . The corresponding 

deformation of equation (11) is shown in equation (13). 

 

 

   
( ', ')

( ', ') ( ', ')

( ', ') ( ', ')

1

1 max ( ', ') ( , ) ( , )

max ( ', ') ( , ) max ( ', ') ( , )

max ( ', ') ( , ) max ( ',

r d rg

w
x u

x

w w
x u x u

x

w
x u x u

x

w w w

R Q x u Q x u Q x u

R Q x u Q x u Q x u Q x u

R Q x u Q x u Q x

 

  

  

    

      
  

       
      

     
  





 ') ( , )wu Q x u 
  

 (13) 

At the end of an episode, the vectors dw and rgw are updated vectors of the value function parameter in Q-learning and 

Q-learning-Bellman respectively. In order to satisfy the requirements of faster convergence, we introduce a new factor  (a 

small, positive constant) in the updating of dw and rgw , which is named forgotten factor. We use dw and rgw to approximate 

dw and rgw , the vectors dw and rgw are updated according to equation (14) and equation (15). 

    
( ', ')

1 max ( ', ') ( , ) ( , )d d w
x u

w w R Q x u Q x u Q x u        
  

 (14) 

  
( ', ') ( ', ')

1 max ( ', ') ( , ) max ( ', ') ( , )rg rg w w
x u x u

w w R Q x u Q x u Q x u Q x u            
      

 (15) 

In addition, the marginally-stable  is calculated by equation (16). 
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 

+
d rg

w

d rg rg

w

w w

w w w




 
 




 (16) 

3.3 FARQ ALGORITHMS 

Residual Q-learning Algorithm with function approximation combines the traditional Q-learning algorithm and Q-

learning-Bellman algorithm, which constructs a new method to update parameter vector of action-value function. By 

choosing an appropriate  and introducing a forgetting factor, the FARS algorithm has better performance and faster 

learning rate. 

The complete algorithm is given as follows. 
 

Algorithm 2 FARQ algorithm 

1: Initialize: 0w ； Xx ； ； =0  

2:  Repeat    

3:       For each  Xx  

4:        ( , )Q Q x u  

5:        
( ', ')

( , ) max ( ', ')
x u

Q x u R Q x u   

6:           
( ', ')

1 max ( ', ') ( , ) ( , )d d w
x u

w w R Q x u Q x u Q x u        
  

 

7:         
( ', ') ( ', ')

1 max ( ', ') ( , ) max ( ', ') ( , )rg rg w w
x u x u

w w R Q x u Q x u Q x u Q x u            
      

 

8:           If 0d rg rg rgw w w w     

9:              0  

10:           Else    

11:            
d rg

w

d rg rg

w

w w

w w w




  
 



（ ）
 

12:                If   1    
13:                        0  

14:                   Else  

15:                            

16:                   End If  

17:            End If 

18:            
( ', ') ( ', ')
max ( ', ') ( , ) max ( ', ') ( , )r r

x u x u
x

w w R Q x u Q x u Q x u Q x u
w w

 
              

  

19:            rw w w    

20:            'x x  

21:       End For 

22:  Until 0E   

4 EXPERIMENTAL RESULTS 

In order to verify the effectiveness and performance of the algorithm, the proposed algorithm, Q-learning algorithm, Q-

learning-Bellman algorithm are applied to the classic Windy Grid World and Pole-balancing problems. 

4.1 Windy Grid World  

We discuss the results of running FARQ, Q-learning, and Q-learning-Bellman algorithms on a 5*6 Windy Grid World 

problem, as shown in figure 4. The agent always begins in the square marked ‘S’ and the episode continues until it reaches 

the square marked ‘T’. In any state, Agent can choose 4 actions 0 1 2 3, , ,a a a a which represents up, down, left and right as 

shown in the direction of the arrow in figure 4. When the column has no wind, the agent chooses an action according to a 

state transition, that is, if the agent chooses the right action, the state will move to the right state, and if the agent chooses 

the left action, the state will move to the left state. For example, the agent is in the state (3,0) , if the agent chooses the action 

to the right, then the state moves to (3,1) . When the column has wind, the resultant next states are shifted upward by the 
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wind. For example, the agent is in state (2,2) , the strength of the wind is 1(The dotted arrow in figure 4 indicates that the 

column has wind, and the value above the dotted arrow describes the strength of the wind, such as 0 /1 , which means the 

strength may be 0 or 1.), the agent chooses the action to the right, then the state will move to (1,3) . In the process of state 

transition, agent can receives a reward of 10 until the goal state is reached, and in other cases, the agent receives a reward of 

1. For this experiment, in order to ensure a certain degree of exploration, we adopt greedy  method to choose actions. The 

maximum number of episodes is set to 250, and the maximum number of time steps of each episode is 2000. The episode 

ends means that the agent reaches the goal state or the time step reaches 2000. In addition, we choose regularization 

parameter 0.9  , 0.1  , 0.1  and 0.01  . 

 
         Figure 3: Windy Grid World problem 

 
Figure 4: Performance analysis for different algorithms on Windy Grid World 

Figure 4 shows the performance analysis of Q-learning, FARQ and Q-learning-Bellman algorithms on Windy Grid 

World problem. The horizontal axis is the episode, and the vertical axis is the steps for the different algorithms to the goal 

state. From figure 4, we can clearly see that the convergence performance of FARQ algorithm is better than the other 

algorithms. The three algorithms Q-learning, FARQ and Q-learning-Bellman converge at the 150
th
, 140

th
, and 30

th
 episodes 

respectively. As a result, the FARQ algorithm has the fast convergence rate, possibly due to the introducing of forgotten 

factor. In the former episodes, the Q-learning algorithm learns faster than the Q-learning-Bellman algorithm, because the Q-

learning-Bellman algorithm attempts to make each state match both successors and its predecessors, so the learning rate is 

slower. In the latter episodes, the Q-learning algorithm fluctuates heavily, and the Q-learning-Bellman algorithm fluctuates 

slightly, but the FARQ algorithm does not, that is because the FARQ algorithm combines the traditional Q-learning and 

bellman residual method, and introduces a new rule to update the function parameter vector. Evidently, FARQ algorithm 

has the best performance.  

Figure 5 shows the performance analysis for different  of FARQ algorithm on Windy Grid World problem. Figure 6 

shows the performance of the latter 100 episodes with different  . For each size of training episodes, the date point was 

calculated by averaging over 20 times. The horizontal axis is the episode, and the vertical axis is the steps for FARQ 

algorithm to reach the goal state. The values of  for six lines in figure 6 are 0.001, 0.005, 0.01, 0.05, and 0.2, respectively. 

In figure 5, we can clearly see that when 0.001  , 0.005  , 0.01  , 0.05  , and 0.2   the algorithm converges at 

about the 125
th
 episode, the 110

th
 episode, the 90

th
 episode, the 70

th
 episode and the 30

th
, respectively. As a result, the 
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convergence rate of the algorithm is proportional to the value of  . However, when 0.2  , the convergence rate of FARQ 

is improved, but the number of the steps to reach the goal state is about 180. Moreover, In figure 6, we can clearly see that 

when 0.001  , 0.005  , and 0.05  , the FARQ algorithm fluctuates more heavily than 0.01  . From figure 6, we can 

know that when 0.2  , the algorithm converges at a local optimum. Therefore, it is worth noting that the smallest  is not 

the best  . Evidently, an appropriate  can make the algorithm have a good robustness and a faster learning rate. 

 

 
Figure 5: Performance analysis for different  of FARQ algorithm on Windy Grid World 

 
Figure 6: Performance analysis for different  of FARQ algorithm on Windy Grid World 

Figure 7 shows the performance analysis for different of FARQ algorithm on Windy Grid World. For each size of 

training episodes, the date point was calculated by averaging over 20 times. Horizontal axis Phi represents the value of  , 

and the vertical axis is the steps required for FARQ algorithm to converge. In the simulation result, we can see that when 

take different values, the algorithm has different performances. In figure 10, we can know that when 0.2 , the algorithm 

has the minimum number step to reach the goal state, and the performance of the algorithm is the best. Moreover, when

0 , the FARQ algorithm and Q-learning algorithm have the same performance, and when 1  , the FARQ algorithm 

and the Q-learning-Bellman algorithm also have the same performance. As a result, the Q-learning algorithm and Q-
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learning-Bellman algorithm are special cases of FARQ algorithm, and the FARQ algorithm can be found that combine the 

beneficial properties of both. 

 
Figure7: Performance analysis for different  of FARQ algorithm on Windy Grid World 

 

4.2 Pole balancing problem  

The pole balancing problem (see Figure 7) requires balancing a pole of unknown length and mass at the upright 

position by applying force to the cart it is attached to. At each time step, if the angle m , between the pole and the vertical 

line is less than 4  ( 4  ), a reward of 1 will be given; otherwise a reward of -1will be received. The goal is to keep 

the pole balance ( 4  ) for a total of 9000 steps during an episode. The maximal episode is 150 and an episode consists 

of 9000 time steps. For this experiment, we choose regularization parameter 0.95  , 0.1  , 0.1  and 0.01  . All the 

values of the parameters are hand-tuned to obtain the best performance. 

 
Figure 8: The pole balancing problem 

The state consists of ( , )   , where  2, 2     is the angel between the pole and the vertical line and  2,2    is 

the corresponding angular velocity of the pole. The action u is the force exerting on the cart and its range is

 50 ,50u N N  . A uniform noise in  10 ,10N N  is added to the selected action at each time step. At the start of each 

episode, the state of the pole is initialized as (0,0) with a uniform random perturbation. The dynamics of system is shown as 

equation (17). 
2

2

sin
sin cos

4 cos

3
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m M
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 
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                                                               (17) 
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Where the gravity constant 29.81g m s , the masses of the pole and the car are 0.1m kg and 1M kg respectively, and the 

length of the pole 1l m . Agent exerts the force F  to the car, and the time interval is 0.1t  , then the state variables are 

t      and t     . The reward function is shown as equation (18). 

1       ( , ) 4
( , )

1     ( , ) 4

f x u
x u

f x u






 
 

 
                                                        (18) 

        We adopt radial basis function (RBF) to extract the features of the states. The center point of the angel   and the 

angular velocity   locate over the grid points  -0.75 -0.5 -0.25 0,0.25,0.5,0.75， ， ， and -2,0,2 , which constitute a total of 21 

center points. The variances are 0.2, 2 for   and  respectively. In pole balancing problem, the performance of the 

algorithm is evaluated by the average steps in each episode, and the higher the average steps, the better the algorithm 

performance. 

  
 

Figure 9: Performance analysis for different algorithms on Pole balancing 

Figure 9 shows the performance analysis of Q-learning, FARQ and Q-learning-Bellman algorithms on Pole balancing 

problem. The horizontal axis is the episode, and the vertical axis is the steps for the different algorithms to the goal state. 

The state space is divided into 21 pieces in total, 7 pieces for the angel, and 3pieces for the angular velocity. From figure 9, 

 

Figure10: Performance analysis for different  of FARQ algorithm on pole balancing 
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we can note that the performances of the three algorithms differ heavily in all episodes. FARQ tends to converge at the 50
th

 

episode and thereafter it fluctuates slightly. Q-learning and Q-learning-Bellman seem to converge at the 90
th
 and 110

th
 

episodes, but they fluctuate heavily until the episodes are terminal. Evidently, FARQ algorithm performs best in terms of 

convergence rate and stability. 

In order to evaluate the effects of  for FARQ algorithm on Pole balancing, we choose four different  to compare 

the performances of FARQ algorithm. the balancing steps are shown in figure 10 respectively. Phi in figure 10 represents 

the value of  . From four pictures, we can know that when 0.15 , 0.2 , 0.3 , and 0.5  , the FARQ algorithm 

converges at the 50
th
 , 50

th
 ,75

th
 , and 90

th
  episodes, respectively. Moreover, when 0.15 , the algorithm fluctuates more 

heavily than other three cases after convergence. As a result, when is  lager, the convergence rate of FARQ is slower, in 

contrast, the convergence rate is improved, but the stability is not the best. Evidently, an appropriate  can make the 

algorithm have a better performance. 
Table 1: performance analysis for FARQ algorithm on Pole balancing 

  0.2 0.3 0.4 

  0.01 0.1 0.2 0.3 0.01 0.1 0.2 0.3 0.01 0.1 0.2 0.3 

MSE 0.28 0.296 0.315 0.342 0.29 0.305 0.323 0.358 0.3 0.318 0.359 0.385 

episode 50 45 40 35 75 60 50 40 100 85 80 60 

Table 1 is the performance analysis for FARQ algorithm with different and different  on Pole balancing problem, 

where MSE represents the mean square error of action-value function after convergence of the algorithm, and episode 

means the number of episodes when the algorithm converges. From table1, we can clearly see that, when the value of  is 

constant, as the value of  is higher, the convergence rate of the algorithm is faster, but the convergence performance is 

worse. When the value of  is constant, as the value of   is higher, the convergence rate of the algorithm is slower, and 

the convergence performance is worse too. Evidently, an appropriate  and an appropriate   can make the algorithm have 

a better performance. 

5 CONCLUSIONS 
This paper proposes an efficient residual Q-learning algorithm based on function approximation, which not only can 

guarantee the convergence but also has a fast learning rate. The algorithm combines the traditional Q-learning algorithm and 

Bellman residual, and adopts a new rule to update the action-value function parameter vector. Theoretically, the new rule 

for updating action-value function parameter vector can guarantee the convergence of the algorithm and solve the unstable 

convergence problem of the traditional Q-learning algorithm. To further accelerate the algorithm convergence rate, the 

algorithm introduces a new factor, named forgotten factor, which makes the algorithm have a faster learning rate and a good 

robustness. We verifies the performance of FARQ on the traditional Windy Grid World and Pole balancing problems, 

where we achieve performance exceeding that of both Q-learning and Q-learning-Bellman.  
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