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Abstract: Protein-protein interactions (PPIs) have proven necessary for the majority of biological 

processes, making their understanding vital for the development of new therapies and techniques in life 

sciences research. Among the residues that constitute a typical protein-protein interface, Hot-Spots (HS) 

are the most important ones due to their highly stabilizing nature. However, HS experimental detection 

has proven to be a burden as it is time consuming and expensive, which prompted the need to develop 

new computational approaches that ensure both speed and precision. Evolution plays a major role in 

protein structure and PPIs refinement, and therefore the incorporation of such data into a predictive 

model may lead to better performance. With this in mind and taking into account the data already 

available from alanine scanning mutagenesis studies and protein structures, we incorporated several 

structure- (i.e. solvent accessible surface area-related values, sequence- (i.e. position-specific scoring 

matrix), and evolutionary-based (i.e. InterEVScore and CoeViz) features into a predictive machine-

learning classification model. We considered six different pre-processing conditions such as Principal 

Component Analysis (PCA) and z-scoring (scaling) with normal, up- and down-sampling of minor and 

major classes. Our results point towards overall better scores when using more evolutionary features, in 

particular EVFold scores.  
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Introduction: Almost all biological processes 

require specific Protein-Protein Interactions (PPI) 

with high complexity [1]. This fact contributes to 

diverse vital functions in cellular communication, 

gene regulation, and immune response [2]. 

Despite this complexity in function, structural 

differences are mainly in surface complementarity 

of PPI. Hot-Spots (HS) represent the main 

residues involved in PPI with major contributions 

to binding free energy [3-5], and were 

experimentally defined upon alanine mutagenesis 

experiments. However, experimental scanning of 

a complete interface is both very expensive and 

time consuming [1, 6, 7]. Evolution-optimized 

cooperativity and specific interactions have been 

considered crucial in characterizing HS [8], which 

provides an important direction when studying 

both HS [9] and protein-protein interfaces [10, 

11]. Adding features as Solvent Accessible 

Surface Area (SASA) [12] as well as sequence-

derived features such as instance Position Specific 

Scoring Matrices (PSSM) [13] enrich predictive 

models and promising results can be attained. 

Coevolution aims at assessing evolutionary 

conservation of protein sequences and functions 

[14]. Computationally, they are expressed as 

coevolution-scores of inter-residue interactions 

for individual proteins. These data can serve also 

as input features when using Machine-Learning 

(ML) techniques for HS prediction.  

 

Materials and Methods: Three different 

databases were used to construct our final HS 

dataset: ASEdb [15], BID [16] and SKEMPI [17]. 

It comprises 533 residues across 53 complexes, all 

of which have known crystallography-determined 

structures and known alanine scanning 

mutagenesis data [18]. Two different datasets 

were then created – allRows, featuring 

InterEVscore [19] and CoeViz [20] scores as 

evolutionary features plus the ones described at 

Melo et al. [21] (533 observations), and wFold, 

which features the same evolutionary features 

plus some EVFold [22] scores (264 observations). 

Due to the lack of a sufficient amount of 

sequences, we were not able to calculate EVFold 

scores for all residues at the dataset. Both these 

datasets were split into training (70%) and testing 

(30%) sets. Pre-processing of the datasets was 

performed with two different methods: centering 

and scaling of all variables (z-scoring) and z-

scoring followed by a Principal Component 

Analysis (PCA). Three sampling methods were 

also employed: regular sampling, up-sampling of 

the minor class and down-sampling of the major 

class for both sets, totaling 6 different “pre-

Protein 
input

• Information retrieved from several databases (ASEdb, BID, SKEMPI)

Two 
different 
datasets

• allRows (coevolution features: InterEVscore, CoeViz)

• wFold (coevolution features: InterEVscore, CoeViz, EVFold)

• Each with training (70%) and testing (30%) sets

Pre-
processing

• Two preprocessing methods: z-scoring and z-scoring + PCA

• Three sampling procedures

• Six different pre-processing conditions

Machine-
learning

• Algorithms from "caret", a machine-learning package from R

• Fighting overfitting: cross-validation + feature selection

• Measuring performance: AUROC, sensitivity and sensibility
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processing conditions” – PCA, PCAUp, 

PCADown, Scaled, ScaledUp and ScaledDown. 

Several algorithms for ML from the R package 

“caret” were used and, in order to improve the 

performance and to handle the high number of 

features, training methods such as cross-

validation and feature selection were performed. 

Standard performance ML metrics were used, 

such as the Area Under the Receiver Operating 

Curve (AUROC), sensitivity (true positive rate) 

and specificity (true negative rate).  

 

Results and Discussion: Figure 1 depicts the 

average AUROC, sensitivity and specificity 

measured across the 31 ML algorithms tested (for 

the 2 datasets in every condition). It shows that 

EVFold scores are quite valuable when predicting 

HS, as the best results across all pre-processing 

conditions were achieved for the wFold dataset.  

One of the most interesting aspects of this study 

was the importance of the pre-processing 

conditions for the outcome of the model. While 

PCA provided the best results for the wFold 

testing set, the ScaledUp pre-processing provided 

the highest AUROC for the wFold training set, 

which might be an evidence towards overfitting in 

the ScaledUp pre-processing condition. 

Furthermore, regarding still the AUROC values, 

while these scores where lower for the wFold 

training set as compared with the allRows training 

set, the scores for the testing set were higher 

(+0.05), with the testing set AUROC values being 

higher than the corresponding values for the 

training set. However, the AUROC should be 

considered an estimate of the scalability of the 

model [23] and the testing AUROC vs. training 

AUROC unorthodox differences might be a 

consequence of this. Nonetheless, considering 

that the improvement in the wFold dataset 

predictive power is observed in all pre-processing 

conditions, this is regarded not as a consequence 

of estimation but as evidence towards the 

importance of evolutionary features in this model. 

As for the values observed for sensitivity and 

specificity, these show an apparent opposite 

tendency, with the best results for the sensitivity 

achieved in the ScaledDown pre-processing 

condition and the best results for the specificity 

achieved in the PCA pre-processing condition. As 

it is known, sensitivity is the ability of a model to 

correctly predict a positive case (a HS, in our 

case), while the specificity is the ability to do so 

with a negative case (a non-HS). As such, a 

compromise must be reached between the pre-

processing conditions in not risking the ability of 

the model to correctly assign a residue as HS vs. 

not overfitting. However, considering that no 

model showed the best possible results for all 

three considered metrics, we calculated the mean 

value for the AUROC, sensitivity and specificity.  

From this, ScaledUp is highlighted as the best pre-

processing condition. It presents a mean value for 

all three metrics of 0.74, with an AUROC of 0.72, 

a sensitivity of 0.70 and specificity of 0.80 in the 

test set.  

 

 
Figure 1 – Results for the average AUROC, sensitivity and 

specificity for each one of the pre-processing conditions in the 

training and testing sets (light blue – allRows training set; dark 

blue – allRows testing set; light green – wFold training set; dark 

green – wFold testing set. A threshold value of 0.70 (black 

horizontal line) was considered in order to classify a model as 

good (above 0.7) or bad (below 0.7).  

 

Conclusions: We observed that by increasing the 

number of evolutionary features in our model we 

were able to improve ML performance, stressing 
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the underlying role for coevolution as a driving 

force of HS formation across different protein-

protein interfaces. As such, one should take into 

account as much as possible evolutionary-based 

features when creating new protein 

structure/interface prediction methods. 

Unfortunately, the number of available sequence 

may still not be sufficient to systematically 

introduce coevolution in larger systems and/or 

large datasets.
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