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A combination of directed homotopy topological and Morse theoretic methods can significantly ex-
tend control and information theories, permitting deeper understanding of ‘developmental’ patholo-
gies afflicting a broad spectrum of biological, psychological, socioeconomic, machine, and hybrid
processes across different time scales and levels of organization. Such pathologies emerge as phase
transitions driven by synergistic forms of environmental insult under stochastic circumstances, caus-
ing ‘comorbid condensations’ through groupoid symmetry breaking. The resulting statistical models
should be useful for the analysis of experimental and observational data in many fields.
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I. INTRODUCTION

Developmental process – ontology – is ubiquitous
across vast biological, social, economic, and machine
realms. Rosen (2012) characterizes this as ‘...anticipatory
behavior at all levels of... organization’. Maturana and
Varela (1980) see cognition permeating biology. Atlan
and Cohen (1998) invoke a ‘cognitive paradigm’ for the
immune system that generalizes to wound healing, blood
pressure regulation, neural dynamics, and so on (Wallace
2012). West-Eberhard (2003; 2005) sees ontology as a
matter of ‘choice’ at developmental branch points. Traffic
flow involves repeated ‘ontological’ choices by atomistic
vehicles at road junctions, as well as during ordinary pas-
sage in heavy traffic (Wallace 2016a Ch.9). Indeed, ma-
chine cognition quite generally requires repeated choice
of response to environmental cues (Wallace 2016a). A
firm responding to market pressures must, at least annu-
ally, reconfigure product lines and marketing strategies,
also a cognitive process (e.g., Wallace 2015 and references
therein). Democratic state actors confronted by changing
patterns of threat and affordance must, at least during
elections, repeatedly choose among the different patterns
of response made available by the contending parties and
candidates. Active warfare involves constantly repeated
choice at all levels of organization leading up to, and dur-
ing, combat operations.

All developmental phenomena are, however, subject
to patterns of failure and dysfunction. These range
from neurodevelopmental disorders such as autism and
schizophrenia (Wallace 2016b) to collapse of vehicle flow
in traffic jams (Kerner and Klenov 2009), and catastro-
phes of governance like Brexit, or the US occupation of
Iraq. Here, we attempt to extend results from informa-
tion and control theories to statistical tools useful in un-

derstanding developmental failure.

II. THE BASIC IDEA

The underlying model of development is that of figure
1, in which a system begins at some initial ‘phenotype’ So
confronting a branch point Co leading to two (or more)
possible subsequent ‘phenotypes’ S1 and S2, where new
branch points C1 and C2 will be confronted, and at which
choices must again be made, and so on.

Two of the three essential components of this model
are intrinsically linked.

The first component is that of directed homotopy, in
the sense of Grandis (2009) and Fajstrup et al. (2016).
That is, there are equivalence classes of paths leading
from ‘phenotype’ Sn to Sn+1, as defined by the branch
conditions Cn. A group structure – the so-called ‘fun-
damental group’ – is imposed on a geometric object by
convolution of loops within it that can be reduced with-
out crossing a hole (e.g., Hatcher 2001). An algebraic
topology of directed homotopy in figure 1 can be con-
structed from the composition of paths that constitutes a
groupoid (Weinstein 1996), an object in which a product
need not be defined between every possible object, here
the equivalence classes of possible linear paths. See the
Mathematical Appendix for an introduction to groupoid
theory. As Weinstein (1996) emphasizes, almost every
interesting equivalence relation on a space B arises in
a natural way as the orbit equivalence relation of some
groupoid G over that space. Instead of dealing directly
with the orbit quotient space B/G as an object in the
category of sets and mappings, one should consider in-
stead the groupoid G itself as an object in the category
of groupoids and homotopy classes of morphisms. An
exactly similar perspective involves use of the homotopy
and homology groups of algebraic topology to character-
ize complicated geometric objects (Hatcher 2001).

The second component is recognition that choice at
developmental branch points involves active selection of
one possible subsequent path from a larger number that
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FIG. 1: Starting at an initial developmental ‘phenotype’ So, a
critical point Co casts a developmental shadow. There are two
directed homotopy equivalence classes of deformable paths
leading to ‘phenotypes’ S1 and S2, followed by similar crit-
ical points C1 and C2. Convolution of equivalence classes
creates a groupoid, an algebraic structure in which a product
between classes in not necessarily defined, unlike the group
properties of homotopy loops on geometric objects. Repeated
critical points Cn over the developmental trajectory system-
atically enlarge the fundamental groupoid characterizing the
developmental process.

may be available. This is often done, in the sense of At-
lan and Cohen (1998), by comparison of ‘sensory’ data
with an internalized – learned or inherited – picture of
the world, and upon that comparison, an active choice
of response is made from a larger number of those possi-
ble. Rosen (2012) invokes ‘anticipatory models’ for such
processes. Following the Atlan/Cohen model, choice in-
volves reduction in uncertainty, and reduction in uncer-
tainty implies the existence of an information source that
we will call ‘dual’ to the underlying cognitive process. See
Wallace(2012) for a somewhat more formal treatment.

What is clear is that the dual information source or
sources associated with developmental process must be
deeply coupled with the underlying groupoid symmetries
characterizing development. As development proceeds,
the groupoid symmetry becomes systematically richer.

Two points:
First, information, as Feynman (1996) argues, is not

‘entropy’, rather it can be viewed as a form of free en-
ergy. Indeed, Feynman (1996), following Bennett, con-
structs a quite nice little idealized machine that turns the
information within a message into useful work.

Second, groupoids are almost groups, and it becomes
possible to apply Landau’s symmetry breaking/making
arguments to the dual information sources characteriz-
ing developmental process (Pettini 2007). In that theory,
phase transitions are recognized in terms of sudden shifts
in the underlying group symmetries available to the sys-

tem at different temperatures. High temperatures, with
the greatest available energies, have the greatest possi-
ble symmetries. Symmetry breaking occurs in terms of
the sudden nonzero value of some ‘order parameter’ like
magnetization at a sufficiently low critical temperature.

For a road network based on figure 1, the ‘order pa-
rameter’ would be the number of road turnoffs blocked
by a traffic jam. The temperature analog is an inverse
function of the linear vehicle density (Kerner and Klenov
2009; Wallace 2016a).

The third component of the model explored here looks
in detail at the embedding regulatory apparatus that
must operate at each branch point to actively choose a
path to the desired ‘phenotype’. This requires explo-
ration of the intimate connection between control and
information theories represented by the Data Rate The-
orem (Nair et al. 2007).

III. CONTROL THEORY

There is no cognition without regulation: the rapidly
fluctuating ‘stream of choice’ must be constrained within
regulatory ‘riverbanks’ that represent an image of the real
world in which the cognitive system is embedded (At-
lan and Cohen 1998). Cognitive choice is then, for the
most part, inherently unstable in the formal control the-
ory sense of the Data Rate Theorem (Nair et al. 2007),
and must be stabilized by provision of control informa-
tion at a critical rate – constant making and remaking
of the riverbanks. Free elections have guarded polling
places. Traffic streams face traffic lights and laws, and
vehicles must be actively driven. Outrageous advertising
claims, except in politics, can meet draconian legal in-
terventions, and law enforcement generally attempts to
ensure conformance with the ‘riverbanks’ of government
directives.

Failure to provide control information at or above a
critical rate initiates characteristic modes of system fail-
ure that are – in a large sense – expressed as ‘develop-
mental disorders’.

Assuming an approximate nonequilibrium steady
state, the simplest model of deviations from that state
– described in terms of an n-dimensional vector of ob-
servables xt at time t – has a linear form:

xt+1 = Axt + But +Wt (1)

where xt+1 is the state at time t + 1, ut is an imposed
n-dimensional control signal vector at time t, Wt is an
added noise signal, and A and B are, in this approxima-
tion, fixed n× n matrices. See figure 2 for a schematic.

According to the Data Rate Theorem (Nair et al.
2007), for an inherently unstable system, the control in-
formation represented by the vector ut must be provided
at a rate H that is greater than the rate at which the
system produces what is called topological information.
For the system of Eq.(1) and figure 2, that rate is

H > log[|det(Au)|] ≡ α0 (2)
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FIG. 2: A control system near some nonequilibrium steady
state. xt is system output at time t, ut the control signal, and
Wt an added noise term.

where det is the determinant and Au is the component
submatrix of A that has eigenvalues ≥ 1.

An alternate derivation of Eq.(2) is given in the Math-
ematical Appendix in terms of a formal Rate Distortion
argument.

The most direct generalization of Eq.(2) in the context
of a scalar integrated environmental insult ρ – a fog-of-
war index, for example, taken as the magnitude of the
largest vector of an empirical principal component anal-
ysis – is

H(ρ) > f(ρ)α0 (3)

f(0)α0 is then the rate at which the system generates
topological information in the absence of an integrated
environmental exposure.

What are H(ρ) and f(ρ)? The Mathematical Ap-
pendix calculates H(ρ) in terms of the ‘cost’ of control
information, given the ‘investment’ ρ, using the exactly-
solvable Black-Scholes approximation (Black and Scholes
1973):

H(ρ) ≈ κ1ρ+ κ2 (4)

where the κi are positive or zero.
Taking the same level of approximation for f(ρ) as in

Eq.(3), so that f(ρ) ≈ κ3ρ + κ4, the stability condition
becomes

T ≡ κ1ρ+ κ2
κ3ρ+ κ4

> α0 (5)

If ρ is small, the necessary condition for stability is
κ2/κ4 > α0. At high ρ the necessary condition for sta-
bility is κ1/κ3 > α0. If κ2/κ4 � κ1/κ3, then at some
intermediate value of ρ the stability inequality may be
violated, leading to failure of developmental regulation,
as in figure 3.

FIG. 3: The horizontal line is the limit α0. If κ2/κ4 � κ1/κ3,
at an intermediate value of the environmental insult index ρ,
T = (κ1ρ+ κ2)/(κ3ρ+ κ4) falls below criticality, and control
of the developmental process fails catastrophically.

Developmental trajectories are embedded not only in
complex, interacting environments of direct exposure,
but of multimodal inheritance, in a large sense, through
various synergistic mechanisms: it is implicit that en-
vironmental and historical factors must interact along
the developmental trajectory of the system of interest.
As a consequence, rather than a simple scalar ρ we
are confronted by an m × m matrix having elements
ρi,j i, j = 1...m that is not likely to be symmetric.

However, square matrices of order m have m scalar
invariants. That is, they have m real numbers that char-
acterize the matrix regardless of how it is expressed in
different coordinate systems. The first invariant is the
trace, and the last, typically, ± the determinant. These
invariants are the coefficients of the characteristic poly-
nomial P(λ):

P(λ) = det(ρ− λI) =

λm + r1λ
m−1 + ...+ rm−1λ+ rm (6)

where the parameter λ is an element of a ring, det is the
determinant, and I the m×m identity matrix. λ can be
taken as the matrix ρ itself, since square matrices form a
ring, producing the classic matrix polynomial expression
P(ρ) = 0× I.

For a m ×m matrix there are m invariants r1, ..., rm
from Eq.(6), and an appropriate scalar exposure index
can be constructed as a monotonic increasing function of
the ri:

ρ̂ = ρ̂(r1, ..., rm) (7)
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This can be used to determine T as

T (ρ̂) =
κ1ρ̂+ κ2
κ3ρ̂+ κ4

(8)

This construction invokes the rate distortion manifold
of Glazebrook and Wallace (2009), formulated as a ‘gen-
eralized retina’ in Wallace and Wallace (2010). It serves
to project a complicated information manifold onto a
lower dimensional tangent space-analog tuned across that
manifold so as to preserve much of the underlying in-
formation. Here, the model assumes a scalar tangent
space. Higher dimensional tangent spaces can, of course,
be constructed from the matrix invariants in the stan-
dard manner of differential geometry, but at the cost of
a considerable increase in mathematical detail.

In a sense, T has become the ‘temperature’ of the com-
plicated fog-of-war interaction matrix ρi,j .

What happens to T (ρ̂) under stochastic circum-
stances? We can explore something of this by examining
how a control signal ut in figure 2 is expressed in the
system response xt+1. To be explicit, suppose it possible
to deterministically retranslate a sequence of system out-
puts Xi = xi1, x

i
2, ... into a sequence of possible control

signals Û i = ûi0, û
i
1, ... and then to compare that sequence

with the original control sequence U i = ui0, u
i
1, .... The

difference between them is a real number measured by
some appropriate distortion measure, allowing calcula-
tion of an average distortion as

< d >=
∑
i

p(U i)d(U i, Û i) (9)

p(U i) is the probability of the sequence U i, d(U i while

Û i) is the distortion between U i, and Û i and the se-
quence of control signals has been deterministically re-
constructed from the system output.

The next step is to apply a Rate Distortion Theo-
rem (RDT) argument. According to the RDT, there is
a Rate Distortion Function (RDF) that determines the
minimum channel capacity, R(D), necessary to keep the
average distortion < d > below some fixed limit D (Cover
and Thomas 2006). Again, applying Feynman’s (1996)
interpretation of information as a form of free energy, it is
possible to construct a Boltzmann-like pseudoprobability
in the ‘temperature’ T :

dP (R, T ) =
exp[−R/T ]dR∫∞

0
exp[−R/T ]dR

(10)

since it is clear that higher T necessarily implies greater
channel capacity.

The denominator integral is similar to a statistical me-
chanical partition function, allowing definition of a ‘free
energy’ Morse Function F analog (Pettini 2007) as

exp[−F/T ] =

∫ ∞
0

exp[−R/T ]dR = T (11)

Thus F (T ) = −T log[T ].
See the Mathematical Appendix for a brief outline of

Morse Theory.
An entropy-analog can now be defined in terms of the

Legendre transform of F as

S ≡ F (T )− T dF/dT = T (12)

At first approximation, it is possible to use Onsager’s
treatment of nonequilibrium thermodynamics (de Groot
and Mazur 1984). The system dynamics are then driven
by the gradient of S in the essential parameter T under
conditions of noise, giving a stochastic differential equa-
tion (SDE) (Protter 1990)

dTt ≈ (µdS/dT )dt+ βTtdWt =

µdt+ βTtdWt (13)

µ is a kind of ‘diffusion coefficient’ representing the
efforts of the underlying control mechanism, and β is the
magnitude of an inherent impinging white noise dWt in
the context of volatility, so that the effect of noise is
proportional to the signal.

Applying the Ito chain rule (Protter 1990) to log(T )
in Eq.(13) produces the stochastic differential equation

d log[T ]t = (µ− 1

2
σ2)dt+ σdWt (14)

Applying Jensen’s inequality for a concave function,
the nonequilibrium steady state (nss) expectation for T
satisfies the limit condition

E(Tt) ≥ E(log[|Tt|]) =
µ

β2/2
(15)

Recall that, in this model, µ indexes attempts by the
embedding control apparatus to impose stability, to raise
T . Thus impinging noise can significantly increase the
probability that T falls below the critical limit of figure
3, triggering a failure in developmental control.

However, E(T ) is an expectation, so that there is al-
ways a nonzero probability that T will fall below the
critical value α0 in the multimodal expression for T (ρ̂).
This implies that sporadic control dysfunctions cannot
be eliminated. While raising µ and lowering β decreases
their probability, such interventions will not drive them
to zero in this model, a matter of some importance for
population-rates of developmental failure.

More specifically, invoking the Stochastic Stabilization
Theorem (Mao 2007),

lim
t→∞

log[|Tt|]
t

→< 0 (16)

almost surely unless

µ >
1

2
σ2 (17)
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IV. COGNITIVE THEORY

A second approach to the dynamics of developmen-
tal regulation and its failure is through the cognitive
paradigm of Atlan and Cohen (1998). Cognition, in their
view, requires active choice of a particular response to an
incoming signal, here an insult, from a larger repertoire
of those possible. Recall that choice reduces uncertainty
and directly implies the existence of an underlying infor-
mation source (Wallace 2012).

Given an information source associated with an in-
herently unstable, rapidly-acting developmental control
system – ‘dual’ to it – an equivalence class algebra can
be constructed by choosing different system origin states
a0 and defining the equivalence of two subsequent states
at times m,n > 0, written as am, an, by the existence
of high-probability meaningful paths connecting them to
the same origin point. Disjoint partition by equivalence
class, analogous to orbit equivalence classes in dynami-
cal systems, defines a symmetry groupoid associated with
the cognitive process. As described, groupoids are deep
generalizations of the group concept in which there is not
necessarily a product defined for each possible element
pair (Weinstein 1996).

The equivalence classes define a set of cognitive dual in-
formation sources available to the inherently unstable de-
velopment regulation system, creating a large groupoid,
with each orbit corresponding to a transitive groupoid
whose disjoint union is the full groupoid. Each sub-
groupoid is associated with its own dual information
source, and larger groupoids will have richer dual infor-
mation sources than smaller.

Let XGi be the control system’s dual information
source associated with the groupoid element Gi, and let
Y be the information source associated with embedding
‘normal’ environmental variation that impinges on de-
velopment. Again, Wallace (2012) details how environ-
mental regularities imply the existence of an environmen-
tal information source that, for humans, particularly in-
cludes cultural and socioeconomic factors (e.g., Wallace
2015).

We again build a ‘free energy’ Morse Function. Let
H(XGi , Y ) ≡ HGi be the joint uncertainty of the two in-
formation sources. A Boltzmann-like pseudoprobability
is written as

P [HGi
] =

exp[−HGi/T ]∑
j exp[−HGj

/T ]
(18)

Again, T is the ‘temperature’ from Eq.(8), via the
ρ̂ of Eq.(7), and the sum is over the different possible
cognitive modes of the full system, characterized by the
groupoid inherent to the developmental trajectory of fig-
ure 1.

A new Morse Function F is defined by

exp[−F/T ] ≡
∑
j

exp[−HGj
/T ] (19)

Given the inherent developmental groupoid as a gener-
alization of the simpler symmetry group, again it is pos-
sible to invoke an extension of Landau’s picture of phase
transition (Pettini 2007). To reiterate, in Landau’s ‘spon-
taneous symmetry breaking’, phase transitions driven by
temperature changes occur as alteration of system sym-
metry, with higher energies at higher temperatures being
more symmetric.

For this model, the shift between symmetries is highly
punctuated in T under the Data Rate Theorem for un-
stable control systems. Typically, there are only a very
limited number of possible phases, which may or may
not coexist under particular circumstances. For example,
Wallace (2016b) argues that comorbid autism spectrum
and schizophrenoform disorders represent the simultane-
ous presence of two such ‘condensations’ affecting the re-
cruitment of lower-level neural modules into the ongoing
stream of high-order real-time cognitive function.

More generally, then, reduction in T can lead to punc-
tuated decline in the complexity of cognitive process pos-
sible within the developmental control system, driving it
into a ‘ground state’ (or states) collapse in which essential
systems fail to develop normally.

Again, the essential feature is the integrated environ-
mental insult ρ̂ constructed as a scalar projection of a
complicated matrix of interacting ‘toxic’ modes. Most
of the topology of the inherently unstable developmental
system has been factored out so that ρ̂(r1, ..., rm) remains
the only possible index of the rate of topological infor-
mation generation for the DRT. Thus, in Eqs.(18) and
(19), T (ρ̂) is again the driving parameter. Again, more
complicated, higher dimensional ‘tangent spaces’ can be
constructed from the ri at the cost of the standard math-
ematical overhead associated with differential geometry.

Increasing ρ̂ is equivalent to lowering the ‘temperature’
T , and the system passes from high symmetry ‘free flow’
to different forms of ‘crystalline’ structure – broken sym-
metries representing the punctuated onset of significant
developmental failure characteristic of different systems.

Sufficient conditions for the intractability – stability –
of pathological low T ‘condensates’ can be explored using
the methods of Wallace (2016c).

V. DISCUSSION AND CONCLUSIONS

In a sense, the underlying argument is by abduc-
tion from recent advances in evolutionary theory: West-
Eberhard (2003, 2005) sees development as a key, but of-
ten poorly appreciated, element of evolutionary process,
in that a new input, whether it comes from a genome,
like a mutation or from the external environment, like a
temperature change, a pathogen, or a parental opinion,
has a developmental effect only if the preexisting phe-
notype can respond. A novel input causes a reorganiza-
tion of the phenotype, a ‘developmental recombination’
in which phenotypic traits are expressed in new or dis-
tinctive combinations during ontogeny, or undergo corre-
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lated quantitative changes in dimensions. Developmental
recombination can result in evolutionary divergence at all
levels of organization.

Most importantly, perhaps, West-Eberhard character-
izes individual development as a series of branching path-
ways. Each branch point is a developmental decision,
a switch point, governed by some regulatory apparatus,
and each switch point defines a modular trait. Devel-
opmental recombination implies the origin or deletion of
a branch and a new or lost modular trait. The novel
regulatory response and the novel trait originate simul-
taneously, and their origins are inseparable events: there
cannot be a change in the phenotype without an altered
developmental pathway.

Thus, there are strong arguments for the great evo-
lutionary potential of environmentally induced novelties.
An environmental factor can affect numerous individu-
als, whereas a mutation initially can affect only one, a
perspective having implications, not only for evolution-
ary economics, but across a full spectrum of ubiquitous
‘developmental’ phenomena: even traffic streams ‘evolve’
under changing selection pressures, and, indeed, such
pressures act at every level of biological, social, or eco-
nomic organization, as well as across rapidly expanding
realms of machine cognition.

That is, just as the Atlan/Cohen ‘cognitive paradigm’
for the immune system generalizes across many different
systems (Wallace 2012), so too does the West-Eberhard
model of development: repeated branching under the
control of an embedding regulatory apparatus respond-
ing to environmental cues is widely observed. Here, we
have applied a control theory formalism via the Data
Rate Theorem, and using information theory, invoked
the dual information source necessarily associated with
regulatory cognition. The intent has been to examine de-
velopmental disorders, in a large sense, over a spectrum
that ranges from cellular to socioeconomic and emerg-
ing machine levels of organization, and across time scales
from those of biological evolution to extremely rapid ma-
chine response.

The main focus here has been on exploring the influ-
ence of environmental insult on developmental dysfunc-
tion, where insult itself has been measured by a projected
scalar ‘tangent space’ defined in terms of the invariants of
the unsymmetric fog-of-war matrix ρi,j . The synergism
between control and information theories via the Data
Rate Theorem, and the extensions using topological and
‘free energy’ Morse Theory methods, provide a new theo-
retical window into the dynamics of many developmental
processes, via the construction of statistical models that,
like more familiar regression procedures, can be applied
to a broad range of experimental and observational data.

VI. MATHEMATICAL APPENDIX

A. Groupoids

A groupoid, G, is defined by a base set A upon which
some mapping – a morphism – can be defined (Wein-
stein 1996). Importantly, not all possible pairs of states
(aj , ak) in the base set A can be connected by that mor-
phism. Those that can define the groupoid element,
a morphism g = (aj , ak) having the natural inverse
g−1 = (ak, aj). Given such a pairing, there are natu-
ral end-point maps α(g) = aj , β(g) = ak from the set of
morphisms G into A, and a formally associative product
in the groupoid g1g2 provided α(g1g2) = α(g1), β(g1g2) =
β(g2), and β(g1) = α(g2). Then the product is defined,
and associative, (g1g2)g3 = g1(g2g3).

Further, there are natural left and right identity ele-
ments λg, ρg such that λgg = g = gρg.

An orbit of the groupoid G over A is an equivalence
class for the relation aj ∼ Gak if and only if there is a
groupoid element g with α(g) = aj and β(g) = ak. A
groupoid is called transitive if it has just one orbit. The
transitive groupoids are the building blocks of groupoids
in that there is a natural decomposition of the base space
of a general groupoid into orbits. Over each orbit there
is a transitive groupoid, and the disjoint union of these
transitive groupoids is the original groupoid. Conversely,
the disjoint union of groupoids is itself a groupoid.

The isotropy group of a ∈ X consists of those g in
G with α(g) = a = β(g). These are fundamental to
classifying groupoids.

If G is any groupoid over A, the map (α, β) : G →
A × A is a morphism from G to the pair groupoid of
A. The image of (α, β) is the orbit equivalence relation
∼ G, and the functional kernel is the union of the isotropy
groups. If f : X → Y is a function, then the kernel of f ,
ker(f) = [(x1, x2) ∈ X × X : f(x1) = f(x2)] defines an
equivalence relation.

Groupoids may have additional structure (Weinstein
1996). A groupoid G is a topological groupoid over a base
space X if G and X are topological spaces and α, β and
multiplication are continuous maps. A sometimes crit-
icism of groupoid theory is that their classification up
to isomorphism is nothing other than the classification
of equivalence relations via the orbit equivalence relation
and groups via the isotropy groups. The imposition of
a compatible topological structure produces a nontriv-
ial interaction between the two structures. It is possible
to introduce a metric structure on manifolds of related
information sources, producing such interaction.

Fundamentally, a groupoid is a category in which all
morphisms have an inverse.

As Weinstein (1996) emphasizes, the morphism (α, β)
suggests another way of looking at groupoids. A groupoid
over A identifies not only which elements of A are equiva-
lent to one another (isomorphic), but also parameterizes
the different ways (isomorphisms) in which two elements
can be equivalent, e.g., all possible information sources
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dual to some cognitive process.
Brown (1987) describes the fundamental structure as

follows:

A groupoid should be thought of as a
group with many objects, or with many iden-
tities... A groupoid with one object is essen-
tially just a group. So the notion of groupoid
is an extension of that of groups. It gives an
additional convenience, flexibility and range
of applications...

EXAMPLE 1. A disjoint union [of groups]
G = ∪λGλ, λ ∈ Λ, is a groupoid: the product
ab is defined if and only if a, b belong to the
same Gλ, and ab is then just the product in
the group Gλ. There is an identity 1λ for each
λ ∈ Λ. The maps α, β coincide and map Gλ
to λ, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R
on [a set] X becomes a groupoid with α, β :
R → X the two projections, and product
(x, y)(y, z) = (x, z) whenever (x, y), (y, z) ∈
R. There is an identity, namely (x, x), for
each x ∈ X...

Weinstein (1996) makes the following central point:

Almost every interesting equivalence re-
lation on a space B arises in a natural way
as the orbit equivalence relation of some
groupoid G over B. Instead of dealing di-
rectly with the orbit space B/G as an object
in the category Smap of sets and mappings,
one should consider instead the groupoid
G itself as an object in the category Ghtp
of groupoids and homotopy classes of mor-
phisms.

This approach underlies the ‘topological’ perspective
of directed homotopy developmental process.

Groupoids have become quite popular in the study of
networks of coupled dynamical systems which can be de-
fined by differential equation models, (e.g., Golubitsky
and Stewart 2006).

B. An RDT proof of the DRT

The Rate Distortion Theorem of information theory
asks how much a signal can be compressed and have av-
erage distortion, according to an appropriate measure,
less than some predetermined limit D > 0. The result is
an expression for the minimum necessary channel capac-
ity, R, as a function of D. See Cover and Thomas (2006)
for details. Different channels have different expressions.
For the Gaussian channel under the squared distortion
measure,

R(D) =
1

2
log[

σ2

D
] D < σ2

R(D) = 0 D ≥ σ2 (20)

where σ2 is the variance of channel noise having zero
mean.

Our concern is how a control signal ut is expressed
in the system response xt+1. We suppose it possible to
deterministically retranslate an observed sequence of sys-
tem outputs x1, x2, x3, ... into a sequence of possible con-
trol signals û0, û1, ... and to compare that sequence with
the original control sequence u0, u1, ..., with the differ-
ence between them having a particular value under the
chosen distortion measure, and hence an observed aver-
age distortion.

The correspondence expansion is as follows.
Feynman (1996), following ideas of Bennett, identifies

information as a form of free energy. Thus R(D), the
minimum channel capacity necessary for average distor-
tion D, is also a free energy measure, and we may define
an entropy S as

S ≡ R(D)−DdR/dD (21)

For a Gaussian channel under the squared distortion
measure,

S = 1/2 log[σ2/D] + 1/2 (22)

Other channels will have different expressions.
The simplest dynamics of such a system are given by

a nonequilibrium Onsager equation in the gradient of S,
(de Groot and Mazur 1984) so that

dD/dt = −µdS/dD =
µ

2D
(23)

By inspection,

D(t) =
√
µt (24)

which is the classic outcome of the diffusion equation.
For the ‘natural’ channel having R(D) ∝ 1/D, D(t) ∝
the cube root of t.

This correspondence reduction allows an expansion to
more complicated systems, in particular, to the control
system of figure 2.

Let H be the rate at which control information is fed
into an inherently unstable control system, in the pres-
ence of a further source of control system noise β, in
addition to the channel noise defined by σ2. The sim-
plest generalization of Eq.(23), for a Gaussian channel,
is the stochastic differential equation

dDt = [
µ

2Dt
−M(H)]dt+ βDtdWt (25)

where dWt represents white noise and M(H) ≥ 0 is a
monotonically increasing function.

This equation has the nonequilibrium steady state ex-
pectation

Dnss =
µ

2M(H)
(26)

measuring the average distortion between what the con-
trol system wants and what it gets. In a sense, this is
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a kind of converse to the famous radar equation which
states that a returned signal will be proportional to the
inverse fourth power of the distance between the trans-
mitter and the target. But there is a deeper result, lead-
ing to the DRT.

Applying the Ito chain rule to Eq.(25) (Protter 1990),
it is possible to calculate the expected variance in the
distortion as E(D2

t ) − (E(Dt))
2. But application of the

Ito rule to D2
t shows that no real number solution for

its expectation is possible unless the discriminant of the
resulting quadratic equation is ≥ 0, so that a necessary
condition for stability is

M(H) ≥ β√µ
H ≥M−1(β

√
µ) (27)

where the second expression follows from the monotonic-
ity of M .

As a consequence of the correspondence reduction lead-
ing to Eq.(25), we have generalized the DRT of Eq.(2).
Different ‘control channels’, with different forms of R(D),
will give different detailed expressions for the rate of gen-
eration of ‘topological information’ by an inherently un-
stable system.

C. A Black-Scholes model

We look at H(ρ) as the control information rate ‘cost’
of stability at the integrated environmental insult ρ. To
determine the mathematical form of H(ρ) under condi-
tions of volatility i.e., variability proportional to a sig-
nal, we must first model the variability of ρ, most simply
taken as

dρt = g(t, ρt)dt+ bρtdWt (28)

Here, dWt is white noise and – counterintuitively –
the function g(t, ρ) will fall out of the calculation on the
assumption of certain regularities.
H(ρt, t) is the minimum needed incoming rate of con-

trol information under the Data Rate Theorem. Expand
H in ρ using the Ito chain rule (Protter 1990):

dHt = [∂H/∂t+ g(ρt, t)∂H/∂ρ+
1

2
b2ρ2t∂

2H/∂ρ2]dt

+[bρt∂H/∂ρ]dWt(29)

It is now possible to define a Legendre transform, L,
of the rate H, by convention having the form

L = −H+ ρ∂H/∂ρ (30)

H is an information index, a free energy measure in the
sense of Feynman (1996), so that L is a classic entropy
measure.

We make an approximation, replacing dX with ∆X
and applying Eq.(29), so that

∆L = (−∂H/∂t− 1

2
b2ρ2∂2H/∂ρ2)∆t (31)

According to the classical Black-Scholes model (Black
and Scholes 1973), the terms in g and dWt ‘cancel out’,
and white noise has been subsumed into the Ito correc-
tion factor, a regularity assumption making this an ex-
actly solvable but highly approximate model.

The conventional Black-Scholes calculation takes
∆L/∆T ∝ L. At nonequilibrium steady state, by some
contrast, we can assume ∆L/∆t = ∂H/∂t = 0, giving

−1

2
b2ρ2∂2H/∂ρ2 = 0 (32)

so that

H = κ1ρ+ κ2 (33)

The κi will be nonnegative constants.

D. Morse Theory

Morse theory studies how analytic behavior of a func-
tion – the location and character of its critical points
– relates to the underlying topology of the manifold
on which the function is defined. Here we roughly fol-
low Pettini (2007). The basic approach is to examine
an n-dimensional manifold M as decomposed into level
sets of some function f : M → R where R is the
set of real numbers. The a-level set of f is defined as
f−1(a) = {x ∈M : f(x) = a}, the set of all points in M
with f(x) = a. If M is compact, then the whole manifold
can be decomposed into such slices in a canonical fashion
between two limits, defined by the minimum and maxi-
mum of f on M . Let the part of M below a be defined
as Ma = f−1(−∞, a] = {x ∈ M : f(x) ≤ a}. These
sets describe the whole manifold as a varies between the
minimum and maximum of f .

Morse functions are defined as a particular set of
smooth functions f : M → R as follows. Suppose a
function f has a critical point xc, so that the derivative
df(xc) = 0, with critical value f(xc). Then f is a Morse
function if its critical points are nondegenerate in the
sense that the Hessian matrix of second derivatives at
xc, whose elements, in terms of local coordinates are

Hi,j = ∂2f/∂xi∂xj ,

has rank n, which means that it has only nonzero eigen-
values, so that there are no lines or surfaces of critical
points and, ultimately, critical points are isolated.

The index of the critical point is the number of negative
eigenvalues of H at xc.

A level set f−1(a) of f is called a critical level if a is a
critical value of f , that is, if there is at least one critical
point xc ∈ f−1(a).

The essential results of Morse theory are (Pettini
2007):

1. If an interval [a, b] contains no critical values of f ,
then the topology of f−1[a, v] does not change for any
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v ∈ (a, b]. The result is valid even if f is not a Morse
function, but only a smooth function.

2. If the interval [a, b] contains critical values, the
topology of f−1[a, v] changes in a manner determined
by the properties of the matrix H at the critical points.

3. If f : M → R is a Morse function, the set of all the
critical points of f is a discrete subset of M , i.e., critical
points are isolated. This is Sard’s Theorem.

4. If f : M → R is a Morse function, with M compact,
then on a finite interval [a, b] ⊂ R, there is only a finite
number of critical points p of f such that f(p) ∈ [a, b].
The set of critical values of f is a discrete set of R.

5. For any differentiable manifold M , the set of Morse
functions on M is an open dense set in the set of real
functions of M of differentiability class r for 0 ≤ r ≤ ∞.

6. Some topological invariants of M , that is, quan-
tities that are the same for all the manifolds that have
the same topology as M , can be estimated and some-

times computed exactly once all the critical points of f
are known: Let the Morse numbers µi(i = 0, ...,m) of a
function f on M be the number of critical points of f of
index i, (the number of negative eigenvalues of H). The
Euler characteristic of the complicated manifold M can
be expressed as the alternating sum of the Morse num-
bers of any Morse function on M , χ =

∑m
i=1(−1)iµi.

The Euler characteristic reduces, in the case of a simple
polyhedron, to χ = V −E+F where V,E, and F are the
numbers of vertices, edges, and faces in the polyhedron.

7. Another important theorem states that, if the in-
terval [a, b] contains a critical value of f with a single
critical point xc, then the topology of the set Mb defined
above differs from that of Ma in a way which is deter-
mined by the index, i, of the critical point. Then Mb is
homeomorphic to the manifold obtained from attaching
to Ma an i-handle, i.e., the direct product of an i-disk
and an (m− i)-disk.
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