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Abstract: The paper reviews existing models for organizing information for machine learning 

systems in heterogeneous computing environments. In this context, we focus on structured 

knowledge representations as they have played a key role in enabling machine learning at scale. 

The paper highlights recent case studies where knowledge structures when combined with the 

knowledge of the distributed computation graph have accelerated machine-learning applications 

by 10x or more. We extend these concepts to the design of Cognitive Distributed Learning Systems 

to resolve critical bottlenecks in real-time machine learning applications such as Predictive Analytics 

and Recommender Systems. 

Keywords: machine learning; cognitive computing; distributed computing; knowledge structures; 

heterogeneous computing 

 

1. Introduction 

As depicted in Figure 1, the information technology landscape has evolved from providing 

business intelligence through analytics to enabling operational intelligence with real-time insights. 

Businesses are able to generate real-time insights to harness perishable in-the-moment opportunities. 

These insights are synthesized through analysis of live data within the contextual lens of multi-

domain historical data. Inference rules that were traditionally generated with classical ETL processes 

are being quickly replaced by Machine Learning (ML) and Deep Learning (DL) techniques to 

generate knowledge based inference engines. 

 

Figure 1. Evolution of Information Technology landscape (from [1]). 

Advancements in knowledge based learning systems are accelerating. A rich eco-system of 

algorithms and open source frameworks, implemented on commodity infrastructure, holds the 

promise of universally accessible capability. Society scale impact is expected in autonomous driving, 

contextualized recommendations, and personalized medicine and in other verticals. As shown in 

Figure 2, machine translation capability is approaching human quality, and automated large-scale 

image classification is beating human capability (see Figure 3). In medicine, ML/DL systems have 
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started to outperform doctors in detecting breast cancer in radiology images [4]. It is the dawn of the 

golden age of data, and we have only begun to unlock key capabilities through learning structures.  

 

Figure 2. DL/ML language translation capability [2]. 

 

Figure 3. Automated image classification [3]. 

2. Challenges with Machine Learning 

Building machine learning systems is hard. The most visible and the best success stories require 

100’s if not 1000’s of engineers. The prediction accuracy of learning systems improves with more data 

and larger models. Computation requirements grow non-linearly with the complexity of the task at 

hand (Figure 4). This creates acute challenges relating to data dimensionality, complex model 

development, slow experiments, and scalability of production deployments. 

 

Figure 4. Computational requirements for scale-out learning (from [5]). 

The data and the computation pipelines in DL/ML systems are complex. As explained in a recent 

paper [6], DL/ML code comprises only 10% of real world ML systems. The bulk of the effort is 

consumed in infrastructure and data management (Figure 7). Automating much of this pipeline has 
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become a focus of recent research activity, so as to make ML/DL systems universally accessible, and 

refocus the activities of the domain expert in building production quality systems [7]. 

Training ML/DL systems are compute intensive tasks, where models can take exaflops to 

compute while processing and generating petabytes of input and intermediate data. The compute 

complexity is high; medium sized experiments and popular benchmarks can take days to run [8], 

severely compromising the productivity of the data scientist. Distributed scaling stalls only after a 

dozen nodes due to locking, messaging, synchronization and data locality issues. The rate of data 

avalanche is beating the growth rates from Moore’s law, resulting in diminished economic returns at 

scale (Figures 6 and 7).  

 

 

Figure 5. The hidden technical debt in machine learning systems (adapted from [5]). 

 

Figure 6. Diminishing economic value of data with scale. 
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Figure 7. Key issues in infra management. 

3. Cognitive Computing Stack 

To address the issues highlighted above, recent research has turned to self-managing, self-aware 

models of computing [10]. The idea is to enable autonomic management of the compute 

infrastructure to the application intent with regards to application performance and data security. 

Policies defining resource, workload and computation process rules regulate application 

performance (Figure 8). This strategy promises exciting and new results in the following areas [11]: 

 Separation of Concerns and Information hiding: Infrastructure and process optimization 

concerns are separated from application logic to hide complexity that allows domain experts to 

re-focus on ML/DL breakthroughs.  

 Autonomic scaling: Provides features that economize scaling, and allow applications to achieve 

high performance without human engineering. It extracts the best performance of many-core 

systems, while optimizing for reliability and data movement—the primary impediments in 

designing scale-out DL/ML systems. 

 Ability to handle complexity with scale: The system can accumulate knowledge and act on it 

to adaptively tune its behavior to robustly achieve desired goals within the performance, power, 

and resilience envelopes specified in the policy framework. 

 Computation resiliency and trusted results: Improve the resiliency of data, applications, 

software, and hardware systems, as well as the trustworthiness of the results produced through 

in-situ fault detection, fault prediction and trust verification mechanisms. 

 

Figure 8. Cont. 
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Figure 8. Cognitive distributed computing model by Dr. Rao Mikkilineni [9]. 
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