
 

                

The 2nd International Electronic Conference on Atmospheric Sciences (ECAS 2017), 16–31 July 2017;  
Sciforum Electronic Conference Series, Vol. 2, 2017

Conference Proceedings Paper 

Sensitivity assessment of WRF parameterizations 
over Europe 
Ioannis Stergiou 1, Efthimios Tagaris 1,2 and Rafaela-Eleni P. Sotiropoulou 1,2,* 

Published: 17 July 2017 
 

1 Department of Mechanical Engineering, University of Western Macedonia, 50132 Kozani, Greece 
2 Department of Environnemental Engineering, University of Western Macedonia, 50132 Kozani, Greece 
* Correspondence: rsotiropoulou@uowm.gr; Tel.: +30-2461-0-56645 

Abstract: Evaluation of the performance of the parameterization schemes used in the WRF model 
is assessed for temperature and precipitation over Europe at 36 km by 36 km grid resolution using 
gridded data from the ECA&D 0.25deg regular grid.  Simulations are performed for a winter (i.e., 
January 2015) and a summer (i.e., July 2015) month using the two way nesting approach. A step-
wise decision approach is followed, beginning with 18 simulations for the various microphysics 
schemes followed by 45 more, concerning all of the model’s PBL, Cumulus, Long-wave, Short-wave 
and Land Surface schemes. The best performing scheme at each step is chosen by integrating the 
entropy weighting method ‘Technique for Order Performance by Similarity to Ideal Solution’ 
(TOPSIS). The concluding scheme set consists of the Mansell-Ziegler-Bruning microphysics scheme, 
the Bougeault-Lacarrere PBL scheme, the Kain-Fritsch cumulus scheme, the RRTMG scheme for 
short-wave, the New Goddard for long-wave radiation and a seasonal-variable sensitive option for 
the Land Surface scheme.  

Keywords: WRF; parameterizations; sensitivity; microphysics; PBL; Cumulus; Long-wave; Short-
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1. Introduction 

The Advanced Research Weather Research and Forecasting model (ARW-WRF, hereafter WRF) 
[1] is a nonhydrostatic mesoscale numerical weather prediction system, that includes a wide range 
of physical parameterizations and it can be initialized either by data from a GCM or by reanalysis 
data. It is an ideal tool for studying phenomena that require high spatial resolution. WRF applications 
only use a single set of parameterization schemes due to the computational cost of running all 
possible combinations. Choosing the best performing set of parameterizations is challenging because 
their performance is highly spatial and time dependent. A significant number of studies have been 
conducted, exploring WRF sensitivity to different parameterization schemes [e.g., 2 – 6].   

Mooney et al. [2] evaluated the sensitivity of WRF to several parameterization schemes for 
regional climates of Europe over the period 1990–95. Their results for temperature show a significant 
dependence on the land surface model, while averaged daily precipitation levels appear to be 
relatively insensitive to the longwave radiation scheme chosen. They conclude that modeling 
precipitation is problematic for WRF with biases of up to 100%. Borge et al. [3] studied WRF 
sensitivity over the Iberian Peninsula for two 1-week periods in the winter and summer of 2005. Their 
findings suggest that no particular scheme or option produces the best results for all the statistical 
parameters and/or geographical locations examined. The optimum configuration they provided for 
the model is based on aggregated performance. Bukovsky and Karoly [4] examined how different 
land surface models and cumulus schemes affect precipitation over North America for May, June, 
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July, and August over the period 1991–95. Their results showed that precipitation was sensitive to 
the choice of land surface model and cumulus scheme, emphasizing the importance of testing WRF 
output for sensitivity to parameterizations for regional climate modelling applications. Jin et al. [5] 
also presented a sensitivity study of four land surface schemes in the WRF model over the western 
US. Their simulation period covered a year from 1 October 1995 to 30 September 1996, resulting in 
acknowledging the strong effect that land surface processes have on temperature and their poor 
effect on precipitation which is overestimated by the model. Flaounas et al. [6] examined how 
convection and planetary boundary layer (PBL) parameterization affect the sensitivity of WRF in a 
study of the 2006 West African monsoon. Their results show that PBL schemes have the strongest 
effect on the vertical distribution of temperature, humidity, and rainfall amount, whereas 
precipitation variability is particularly sensitive to convection parameterization schemes.  

The objective of this study is to assess the sensitivity of WRF parameterizations over Europe at 
a 36x36Km grid cell resolution and produce a final parameterization combination that performs best 
for the whole European region. The long term purpose of this study is to calibrate the RCM to its best 
possible performing set up in order to be used for downscaling GCM data. 

 

2. Method  

2.1. Modelling domains and initialization 

The Weather Research and Forecasting (WRF) [1] version 3.7.1 is used, here, to dynamically 
downscale the ENSEMBLES daily gridded observational dataset (E-OBS) [7, 8] in a nesting approach 
over Europe in order to assess the model’s sensitivity to different parameterization set ups by 
examining its ability to reproduce spatial patterns of the mean temperature and precipitation over 
Europe. Due to the computationally prohibitive nature of running WRF the simulations are 
performed for a winter and a summer month (i.e., January and July 2015). The dynamical 
downscaling approach is following the two way nesting approach with grid resolutions of 108 Km 
and 36 Km with the finer nested domain covering the European region (Figure 1).  
 

 
Figure 1. WRF multinesting domain configuration approach.

 
The initial set of simulations concerned the Microphysics parameterization schemes with all 

other parameterizations at their default values. The second simulation group explored the effect of 
the PBL schemes since it has no direct interactions with microphysics [9] (Figure 2), followed by the 
Cumulus parameterizations which do not interact with PBL, the Longwave and Shortwave radiation 
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schemes being independent of the previous ones and finally Land Surface schemes. Our simulation 
groups include most of the existing options the WRF model can offer. Any options that are not 
included in this study were either extremely time consuming, not being able to run with the model’s 
multi-core mode, or did not produce an hourly output so they were excluded on the basis of not 
being on the same time scale with the rest. 

 

 
Figure 2. Interactions between WRF parameterization schemes. 

 
At the end of each simulation group, statistical measures for model’s performance were 

calculated (Table 1) as well as a spatial distribution map of the mean bias was created. The estimation 
of these measures was conducted by comparison of the model’s mean daily output to the E-OBS 
dataset from the EU-FP6 project ENSEMBLES provided by the ECA&D project for every grid cell 
(http://www.ecad.eu). 

Table 1. Statistical measures representing each simulation. 

Measure Formula

MEAN BIAS 
∑ (ܺௗ௧ௗ − ܺ௦௩ௗ)ୀଵ ݊  

 

ROOT 
SQUARE 
ERROR 

 

ඨ∑ (ܺௗ௧ௗ − ܺ௦௩ௗ)ଶୀଵ ݊  

INDEX OF 
AGREEMENT 

1 − ∑ (ܺௗ௧ௗ − ܺ௦௩ௗ)ଶୀଵ∑ (หܺௗ௧ௗ − തܺ௦௩ௗห + |ܺ௦௩ௗ − തܺ௦௩ௗ|)ଶୀଵ  

MEAN 
ABSOLUTE 

ERROR 

∑ |ܺௗ௧ௗ − ܺ௦௩ௗ|ୀଵ ݊  

 
In order to identify the best parameterization option for each simulation group the TOPSIS 

(Technique for Order Preference by Similarity to the Ideal Solution) method was utilized. It is a multi-
criteria decision analysis method summurized below. Our decision making approach focused on 
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mean temperature prediction, being the variable best forecasted by numeric models and additionally, 
the effects of our scheme choices on precipitation were also assessed.  

 

2.2. Technique for Order Preference by Similarity to the Ideal Solution 

The TOPSIS method was first developed by Hwang and Yoon [10] with further developments 
by Yoon [11] and Hwang et.al [12]. It ranks the alternatives according to their distances from the ideal 
and the negative ideal solution, i.e. the best alternative has simultaneously the shortest distance from 
the ideal solution and the farthest distance from the negative ideal solution. Some of the advantages 
of TOPSIS methods are: simplicity, rationality, comprehensibility, good computational efficiency and 
ability to measure the relative performance for each alternative in a simple mathematical form. 
TOPSIS is a method of compensatory aggregation that compares a set of alternatives by identifying 
weights for each criterion, normalizing scores for each criterion and calculating the geometric 
distance between each alternative and the ideal alternative, which is the best score in each criterion. 
The TOPSIS process is carried out as follows:  
Step 1: Creating an evaluation matrix consisting of ݉ alternatives and ݊ criteria. 
Step 2: Normalizing the evaluation matrix. 
Step 3: Calculating a weighted normalized decision matrix by determining the weights of the various 
factors. In this study Shannon’s entropy theory [13] was adopted in order to calculate the weighting 
factors. 
Step 4: Determining the positive-ideal solution (PIS) and the negative-ideal solution (NIS) by defining 
each of the criteria in use as positive or negative. 
Step 5: Calculating the distance between the target alternative and (PIS) and the distance between 
the target alternative and (NIS). 
Step 6: Calculating the Closeness Coefficient (CC) of each alternative. The coefficient is defined to 
determine the ranking order of each alternative.  
Step 7: Determining the ranking order of all alternatives according to the closeness to the ideal solution which is based on the criteria we have inserted in the method and selecting the best or the 
worst one from the set of feasible alternatives.  
 

3. Results and Discussion 

Τhe various options of Microphysics parameterization schemes were assessed firstly keeping all 
other model options at their default values. The statistical measures were calculated for each 
simulation and were used as input for the multi-criteria ranking method. The TOPSIS ranking results 
as well as the statistical measures are shown in Τable 2. Option 17,the NSSL 2–moment Scheme [14], 
has been chosen as the best Microphysics parameterization scheme: it is ranking 1st for temperature 
in July and 3rd for temperature in January. However, the two better schemes for temperature in 
January (i.e., CAM V5.1 2–moment 5–class Scheme and SBU Stony–Brook University Scheme) are 
not so good for temperature in July. In addition, option 17 presents one of the best performances for 
predicting mean precipitation for January. However, the selected scheme is not one of the best for 
predicting precipitation in July since this month has very low and location dependant precipitation 
rates in Europe. The NSSL 2–mom is a double moment scheme for cloud droplets, rain drops, ice 
crystals, snow, graupel, and hail, which has one prediction equation for mass mixing ratio (kg/kg) 
per species (Qrain, Qsnow, etc) and a prediction equation for number concentration (#/kg) per species 
(Nrain, Nsnow, etc.)  
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Table 2. Statistical measures and TOPSIS ranking for the Microphysics simulation group. 

Option Microphysics Scheme 

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking 

Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 

JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1 Kessler Scheme [15] -0.41 -1.40 -0.51 -0.37 2.69 2.19 3.54 3.86 0.97 0.97 0.79 0.71 1.98 1.77 1.56 1.81 16 17 17 17 

2 Lin et al. Scheme [16] -0.40 -1.03 0.12 -0.02 2.61 1.93 3.72 3.95 0.97 0.97 0.80 0.73 1.91 1.51 1.68 1.87 15 8 9 2 

3 WSM3 Single–moment 3–class Scheme [17] -0.87 -1.20 0.09 -0.09 2.74 2.01 3.65 3.78 0.96 0.97 0.80 0.74 2.11 1.60 1.66 1.82 17 15 8 4 

4 WSM5 Single–moment 5–class Scheme [17] -0.25 -1.20 0.13 -0.10 2.61 2.01 3.62 3.82 0.97 0.97 0.81 0.74 1.89 1.60 1.67 1.82 12 16 10 6 

6 WSM6 Single–moment 6–class Scheme [18] -0.25 -1.07 0.13 -0.09 2.61 1.95 3.64 3.83 0.97 0.97 0.81 0.73 1.89 1.53 1.68 1.82 7 10 11 5 

7 Goddard Scheme [19] -0.21 -1.12 0.07 -0.11 2.61 1.99 3.48 3.82 0.97 0.97 0.81 0.73 1.88 1.57 1.61 1.81 5 13 7 7 

8 Thompson Scheme [20] -0.24 -0.89 -0.04 0.16 2.61 1.87 3.44 3.95 0.97 0.98 0.81 0.72 1.89 1.43 1.58 1.94 6 6 6 14 

9 Milbrandt–Yau Double Moment Scheme [21, 22] -0.25 -0.93 0.19 0.17 2.61 1.89 3.51 4.00 0.97 0.97 0.82 0.72 1.90 1.46 1.66 1.95 18 7 14 16 

10 Morrison 2–moment Scheme [23] -0.25 -1.06 -0.02 -0.13 2.62 1.94 3.46 3.79 0.97 0.97 0.81 0.73 1.90 1.52 1.59 1.80 10 9 4 13 

11 CAM V5.1 2–moment 5–class Scheme [24] -0.02 -1.42 -0.26 -0.54 2.56 2.18 3.62 3.49 0.97 0.97 0.78 0.73 1.81 1.78 1.58 1.65 1 18 18 18 

13 SBU Stony–Brook University Scheme [25] -0.16 -0.87 0.03 0.02 2.59 1.86 3.40 3.85 0.97 0.97 0.81 0.73 1.86 1.43 1.59 1.86 2 5 5 1 

14 WDM5 Double Moment 5–class Scheme [26] -0.25 -1.10 0.15 -0.11 2.60 1.97 3.66 3.82 0.97 0.97 0.80 0.73 1.88 1.54 1.70 1.83 9 11 12 8 

16 WDM6 Double Moment 6–class Scheme [26] -0.25 -1.10 0.16 -0.13 2.60 1.97 3.70 3.82 0.97 0.97 0.80 0.73 1.88 1.55 1.71 1.82 8 12 13 12 

17 NSSL 2–moment Scheme [14] -0.17 -0.83 -0.03 0.12 2.59 1.83 3.36 3.83 0.97 0.98 0.81 0.73 1.86 1.40 1.56 1.91 3 1 2 10 

18 NSSL 2–moment Scheme with CCN Prediction [14] -0.17 -0.83 -0.03 0.11 2.59 1.83 3.36 3.83 0.97 0.98 0.81 0.73 1.86 1.40 1.56 1.91 4 3 1 9 

19 NSSL 1–moment 7–class Scheme -0.31 -0.83 -0.25 0.12 2.62 1.83 3.44 3.83 0.97 0.98 0.81 0.73 1.91 1.40 1.57 1.91 13 2 15 11 

21 NSSL 1–moment 6–class Scheme [27] -0.31 -1.13 -0.25 -0.06 2.62 1.99 3.47 3.94 0.97 0.97 0.81 0.71 1.91 1.57 1.58 1.86 14 14 16 3 

28 Aerosol–aware Thompson Scheme [28] -0.25 -0.84 -0.02 0.17 2.60 1.84 3.46 3.95 0.97 0.98 0.81 0.72 1.89 1.41 1.58 1.95 11 4 3 15 
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With the Microphysics option set to 17 we conducted the second set of simulations, assessing 
the PBL options provided by the WRF model. PBL options only work with certain Surface Layer 
options in the model so there were specific combinations of PBL / Surface Layer schemes to be used 
as presented in Table 3. A PBL scheme’s purpose is to distribute surface fluxes with boundary layer 
eddy fluxes and allow for PBL growth by entrainment. There are 2 classes of PBL schemes  

– Turbulent kinetic energy prediction (Mellor-Yamada-Janjic, MYNN, Bougeault-Lacarrere, 
TEMF, QNSE, CAM UW)  

– Diagnostic non-local (YSU, GFS, MRF, ACM2) 
The Surface Layer schemes use similarity theory to determine exchange coefficients and 

diagnostics of 2m temperature. moisture and 10 m winds. They provide the exchange coefficient to 
the land-surface models, the friction velocity to the PBL scheme and surface fluxes over water points. 
These schemes have variations in their stability functions and roughness lengths. Τhe best 
performing options for temperature was option 8 for PBL which corresponds to the Bougeault–
Lacarrere Scheme [29] in combination with option 1 meaning the MM5 Similarity [30] Surface Layer 
scheme. However, these options are not the best for precipitation. The Bougeault–Lacarrere Scheme 
is a turbulent kinetic energy (TKE) prediction scheme while the MM5 Similarity is based on Monin-
Obukhov with Carslon-Boland viscous sub-layer and standard similarity functions. 

The next simulation group focused on the Cumulus parameterization schemes shown in Table 
4. Convective parameterization schemes were designed to reduce atmospheric instability in the 
model. Prediction of precipitation is actually just a by-product of the way in which a scheme does 
this. Consequently, these schemes may not predict the location and timing of convective precipitation 
as well as we might expect. For climate models, the location and timing of precipitation is less 
important than for weather forecast models. The scheme that performed best for temperatures were 
the model’s default Kain–Fritsch Scheme [31] (option 1) as well as the OSAS Old Simplified 
Arakawa–Schubert [32] (option 4). We decided to keep the model’s default Kain–Fritsch Scheme 
(option 1) for the next simulation group since it is better for winter precipitation, as well. The Kain–
Fritsch Scheme is a deep and shallow convection sub-grid scheme using a mass flux approach with 
downdrafts and CAPE removal time scale. It includes cloud, rain, ice and snow detrainment. 

Longwave radiation schemes were the simulation group that followed. These schemes compute 
clear-sky and cloud upward and downward radiation fluxes and they consider IR emission from 
layers. Surface emissivity is based on land-type and flux divergence leads to cooling in a layer while 
downward flux at the surface is important in the land energy budget. IR radiation generally leads to 
cooling in clear air (~2K/day), stronger cooling at cloud tops and warming at cloud base. The options 
provided by the model are shown in Table 5. Looking at the ranking of the simulations that took 
place, the RRTMG Fast version Longwave Scheme [33] (option 24) had the top ranking in predicting 
mean temperature for both January and July and a relatively high ranking concerning precipitation 
in January. The RRTMG scheme is actually a new version of Rapid Radiative Transfer Model 
including the Monte Carlo Independent Column Approximation (MCICA)[34] method of random 
cloud overlap. 

The Shortwave radiation schemes simulation group was assessed next according to the options 
of Table 6. They compute clear sky and cloudy solar fluxes, including the annual and diurnal solar 
cycle. Most of them consider downward and upward (reflected) fluxes (Dudhia scheme only has 
downward flux). They consider primarily a warming effect in clear sky and they are a very important 
component of surface energy balance. The New Goddard Shortwave Scheme [35] (option 5) is one of 
the best schemes for simulating temperature for both months. However, this scheme is not among 
the best schemes for precipitation prediction.  
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Table 3. Statistical measures and TOPSIS ranking for the PBL / Surface Layer simulation group. 

Option PBL / Surface Layer Scheme 

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking 

Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 

JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1/1 YSU/MM5 Yonsei University Scheme [36] / MM5 [30] 
0.17 0.83 0.03 -0.12 2.59 1.83 3.36 3.83 0.97 0.98 0.81 0.73 1.86 1.40 1.56 1.91 2 2 2 6 

2/2 MYJ/Eta Mellor–Yamada–Janjic Scheme [37] / Eta [38] 0.33 1.27 0.09 -0.62 2.61 2.13 3.38 4.00 0.97 0.97 0.80 0.72 1.90 1.67 1.56 2.15 11 11 8 13 

4/4 QNSE/QNSE Quasi–normal Scale Elimination Scheme [39] 0.41 1.92 -0.03 -0.67 2.63 2.60 3.48 4.26 0.97 0.95 0.80 0.70 1.94 2.14 1.62 2.26 14 18 6 14 

5/1 MYNN2/MM5 Mellor–Yamada Nakanishi Niino Level 2.5 [40]/[30] 0.36 0.93 0.11 -0.20 2.63 1.90 3.36 3.77 0.97 0.97 0.80 0.73 1.93 1.46 1.56 1.91 12 5 11 4 

5/2 MYNN2/Eta [40]/[38] 0.85 1.58 0.22 -0.28 2.86 2.48 10.11 5.94 0.96 0.96 0.29 0.51 2.15 1.92 2.43 2.22 18 16 18 16 

5/5 MYNN2/MYNN [40] 0.29 1.51 0.11 -0.44 2.63 2.28 3.35 3.87 0.97 0.96 0.81 0.73 1.91 1.81 1.56 2.04 8 12 12 10 

6/1 MYNN3/MM5 Mellor–Yamada Nakanishi Niino Level 3 [41]/[30] 0.38 0.96 0.10 -0.18 2.63 1.91 3.37 3.82 0.97 0.97 0.80 0.73 1.93 1.47 1.56 1.93 13 7 9 7 

6/2 MYNN3/Eta [41]/[38] 0.83 1.56 0.11 -0.28 2.84 2.43 11.46 6.20 0.96 0.96 0.25 0.50 2.13 1.89 2.49 2.25 17 15 17 17 

6/5 MYNN3/MYNN [41] 0.31 1.55 0.10 -0.41 2.62 2.29 3.36 3.96 0.97 0.96 0.81 0.72 1.91 1.84 1.56 2.07 9 13 10 12 

7/1 ACM2/MM5 Asymmetric Convection Model 2 Scheme [42]/[30] 0.22 1.08 -0.03 0.04 2.59 1.96 3.37 3.77 0.97 0.97 0.81 0.73 1.88 1.54 1.58 1.81 7 9 3 2 

7/7 ACM2/Pleim-Xiu [42]/[43] 0.22 1.58 -0.11 -0.26 2.59 2.32 3.48 3.96 0.97 0.96 0.80 0.72 1.88 1.89 1.63 1.97 6 14 13 9 

8/1 BouLac/MM5 Bougeault–Lacarrere Scheme [29]/[30] 0.002 0.69 -0.07 -0.28 2.61 1.79 3.40 4.00 0.97 0.98 0.81 0.72 1.85 1.36 1.60 2.02 1 1 7 11 

8/2 BouLac/Eta [29]/[38] 0.82 2.08 0.34 -0.03 2.98 3.18 8.60 6.73 0.96 0.93 0.33 0.42 2.22 2.41 2.51 2.35 16 19 19 18 

9/1 UW/MM5 University of Washington Scheme [44]/[30] 0.32 0.93 0.12 -0.12 2.59 1.89 3.36 3.73 0.97 0.97 0.80 0.73 1.88 1.45 1.55 1.87 10 6 14 3 

9/2 UW/Eta [44]/[38] 0.94 1.68 0.33 -0.13 2.93 2.55 8.75 5.11 0.96 0.95 0.33 0.58 2.20 1.99 2.39 2.15 19 17 16 15 

10/10 TEMF/TEMF Surface Layer Scheme [45] 0.65 0.97 -0.77 -3.22 2.77 2.16 4.62 9.81 0.96 0.97 0.73 0.46 2.11 1.67 2.07 4.39 15 10 15 19 

11/1 Shin-Hong/MM5 Scale–aware Scheme [46]/[30] 0.20 0.85 0.04 -0.11 2.59 1.85 3.36 3.82 0.97 0.98 0.81 0.73 1.86 1.41 1.56 1.91 5 3 4 5 

12/1 GBM/MM5 Grenier–Bretherton–McCaa Scheme [47]/[30] 0.17 0.99 0.05 -0.18 2.57 1.94 3.36 3.85 0.97 0.97 0.81 0.72 1.85 1.49 1.56 1.93 3 8 5 8 

99/1 MRF/MM5 [48]/[30] -0.19 0.86 0.02 0.13 2.67 1.88 3.31 3.64 0.96 0.98 0.81 0.74 1.88 1.45 1.55 1.76 4 4 1 1 

 
Table 4. Statistical measures and TOPSIS ranking for the Cumulus simulation group. 
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Option Cumulus Scheme 

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking 

Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 

JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 
1 Kain–Fritsch Scheme [31] 0.002 0.691 -0.073 -0.282 2.608 1.791 3.404 4.001 0.966 0.977 0.814 0.715 1.854 1.357 1.595 2.020 3 1 2 7 
2 BMJ Betts–Miller–Janjic Scheme [37] -0.004 0.718 0.007 0.222 2.608 1.801 3.345 3.443 0.966 0.977 0.814 0.753 1.851 1.366 1.571 1.651 8 2 3 5 
3 GF Grell–Freitas Ensemble Scheme [49] 0.003 0.902 -0.087 0.166 2.607 1.866 3.427 3.668 0.966 0.975 0.810 0.736 1.849 1.438 1.603 1.728 5 6 7 2 
4 OSAS Old Simplified Arakawa–Schubert [32] -0.001 0.827 0.006 0.335 2.608 1.835 3.338 3.411 0.966 0.976 0.816 0.751 1.850 1.401 1.559 1.611 1 3 6 6 
5 G3 Grell 3D Ensemble Scheme [50] -0.002 0.923 -0.110 0.203 2.608 1.873 3.385 3.530 0.966 0.975 0.817 0.749 1.850 1.446 1.590 1.654 4 8 8 4 

6 Tiedtke Scheme [51] -0.003 0.851 0.011 0.587 2.619 1.839 3.320 3.451 0.965 0.976 0.820 0.742 1.860 1.408 1.544 1.572 7 4 1 10 

14 NSAS New Simplified Arakawa–Schubert [52] -0.008 0.902 -0.152 0.384 2.609 1.865 3.420 3.911 0.966 0.976 0.816 0.698 1.851 1.439 1.616 1.714 9 5 9 8 

16 New Tiedtke Scheme [53] 0.046 0.960 0.229 0.514 2.620 1.871 3.269 3.268 0.965 0.975 0.811 0.763 1.865 1.448 1.496 1.544 10 9 10 9 

93 GD Grell–Devenyi Ensemble Scheme [50] -0.001 0.913 0.046 0.171 2.606 1.871 3.383 3.617 0.966 0.975 0.802 0.737 1.849 1.442 1.577 1.721 2 7 5 3 
99 old KF Old Kain–Fritsch Scheme [54] 0.003 0.991 -0.038 -0.027 2.604 1.912 3.355 3.731 0.966 0.974 0.814 0.728 1.847 1.478 1.579 1.891 6 10 4 1 

 

Table 5. Statistical measures and TOPSIS ranking for the Longwave Radiation simulation group. 

Option Longwave Scheme 

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking 

Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 

JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1 RRTM Longwave Scheme [55] -0.002 -0.691 0.073 0.282 2.608 1.791 3.404 4.001 0.966 0.977 0.814 0.715 1.854 1.357 1.595 2.020 3 2 4 4 

3 CAM Longwave Scheme [56] -0.647 -1.116 0.075 0.135 2.717 1.951 3.391 3.828 0.963 0.973 0.813 0.724 2.062 1.522 1.592 1.935 7 6 5 1 

4 RRTMG Longwave Scheme [33] -0.319 -0.791 0.054 0.238 2.605 1.809 3.391 3.941 0.966 0.976 0.814 0.718 1.906 1.377 1.582 1.996 4 4 2 2 

5 New Goddard Longwave Scheme [35] -0.479 -0.936 0.082 0.240 2.599 1.858 3.391 3.929 0.967 0.975 0.814 0.720 1.933 1.429 1.590 1.994 6 5 6 3 

7 FLG Fu–Liou–Gu Longwave [57]  -0.335 -1.981 0.023 -0.308 2.615 3.121 3.421 4.214 0.966 0.931 0.810 0.646 1.916 2.357 1.609 2.033 5 7 1 6 

24 RRTMG Fast Version -0.247 -0.379 0.054 0.323 2.582 1.679 3.392 4.034 0.967 0.980 0.814 0.712 1.880 1.249 1.582 2.051 1 1 3 5 

31 Held-Suarez Relaxation Longwave  -11.015 -10.658 -0.406 -0.797 11.947 11.123 3.352 3.443 0.624 0.584 0.793 0.714 11.163 10.665 1.522 1.616 8 8 8 8 

99 GFDL Longwave Scheme [58] -0.217 -0.767 0.102 0.324 2.586 1.787 3.389 4.089 0.967 0.977 0.815 0.708 1.878 1.357 1.596 2.064 2 3 7 7 

 
Table 6. Statistical measures and TOPSIS ranking for the Shortwave Radiation simulation group.  
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Option Shortwave Scheme 

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking 

Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 

JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1 Dudhia Shortwave Scheme [59] -0.247 -0.379 0.054 0.323 2.582 1.679 3.392 4.034 0.967 0.980 0.814 0.712 1.880 1.249 1.582 2.051 7 6 3 3 

2 GFSC Goddard Shortwave Scheme [35] 0.218 0.493 0.087 0.842 2.541 1.873 3.402 4.841 0.969 0.973 0.815 0.669 1.791 1.478 1.593 2.435 6 7 8 8 

3 CAM Shortwave Scheme [56] -0.012 -0.215 0.056 0.427 2.536 1.711 3.389 4.206 0.968 0.978 0.815 0.703 1.801 1.300 1.582 2.139 1 4 4 5 

4 RRTMG Shortwave Scheme [33] -0.192 -0.116 0.079 0.574 2.518 1.760 3.385 4.504 0.969 0.977 0.816 0.689 1.810 1.358 1.582 2.263 5 1 6 7 

5 New Goddard Shortwave Scheme [35] 0.071 0.180 0.061 0.541 2.526 1.709 3.390 4.320 0.969 0.979 0.815 0.695 1.784 1.305 1.583 2.204 2 3 5 6 

7 FLG Fu–Liou–Gu Shortwave Scheme [57] -1.474 -7.362 0.053 -0.473 3.592 7.884 3.406 3.540 0.930 0.685 0.813 0.726 2.754 7.369 1.589 1.700 8 8 2 4 

24 RRTMG Fast Version -0.133 -0.173 0.079 0.216 2.506 1.727 3.383 4.081 0.970 0.978 0.816 0.710 1.795 1.315 1.582 2.036 4 2 7 2 

99 GFDL Shortwave Scheme [58] 0.123 -0.356 0.043 0.153 2.573 1.725 3.390 3.583 0.967 0.978 0.814 0.746 1.831 1.311 1.579 1.871 3 5 1 1 

 
Table 7. Statistical measures and TOPSIS ranking for the Land Surface simulation group. 

Option Land Surface Scheme 

Mean Bias Root Square Error Index of Agreement Mean Absolute Error TOPSIS Ranking 

Temp Prec Temp Prec Temp Prec Temp Prec Temp Prec 

JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL JAN JUL 

1 5–layer Thermal Diffusion [60] -0.071 -0.180 -0.061 -0.541 2.526 1.709 3.390 4.320 0.969 0.979 0.815 0.695 1.784 1.305 1.583 2.204 2 3 3 1 

2 Unified Noah Land Surface Model [61] 0.585 0.3356 0.1108 1.2449 2.5308 1.4518 2.8669 4.9301 0.9719 0.9821 0.8572 0.6684 1.7834 1.1292 1.4464 2.7321 3 4 1 5 

3 RUC Land Surface Model [62] 1.3032 0.1676 0.1723 0.9127 2.8025 1.4132 2.8847 4.5981 0.9669 0.9836 0.8579 0.6874 2.0471 1.1056 1.4654 2.4994 4 1 4 3 

4 Noah–MP Land Surface Model [63] 1.2921 0.1795 0.1175 0.829 2.9321 1.4624 2.8976 4.4826 0.9647 0.9816 0.857 0.6958 2.1029 1.1459 1.4618 2.4304 5 2 2 2 

7 Pleim–Xiu Land Surface Model [64] 0.1206 0.6808 0.2615 1.0901 2.2981 1.934 2.9817 4.7504 0.9729 0.9648 0.852 0.6765 1.6198 1.4384 1.5162 2.6388 1 5 5 4 
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The final simulation group involved Land Surface parameterization schemes shown in Table 7. 
A Land-Surface model predicts soil temperature and soil moisture in layers (4 for Noah and 
NoahMP, 6 for RUC, 2 for Pleim-Xiu) and snow water equivalent on ground. It also may predict 
canopy moisture only (Noah, NoahMP). The results show that land surface processes strongly affect 
temperature simulations which is a conclusion consistent with previous studies [5], while 
precipitation remains relatively unaffected. Scheme performances varied, revealing their seasonal 
dependence. For winter temperature the Pleim–Xiu Land Surface Model [64] had the best statistical 
results, while the scheme performed poorly for summer mean temperature where the RUC Land 
Surface Model [62] performed best. The Pleim–Xiu Land Surface Model is a two-layer scheme with 
vegetation and sub-grid tiling, while the RUC Land Surface Model predicts soil temperature and 
moisture in six layers using multi-layer snow and frozen soil physics. Regarding precipitation, the 
Unified Noah Land Surface Model [61] gave the best results for January while performing the worst 
for July, where the default 5–layer Thermal Diffusion [60] presented the best results.  

Spatial mean bias plots using the best option of all the schemes examined above are presented 
for temperature (Figure 3) and precipitation (Figure 4) along with the initial plots using model’s 
default options. These plots will alow to assess spatial improvments for each option selected.   

The approach followed here greatly increases the model’s prediction ability for temperature 
(Figure 3). Initial January simulations show significant deviations from the observed values with 
underestimations in central-east Europe, northern and central Italy, Greece and the Iberian up to 
three degrees Celsius. Overestimations are located mostly in Scandinavia reaching five degrees 
Celsius. Underestimations were also presented for almost all continental Europe in the initial July 
simulation reaching 4-5 OC in the Iberian Peninsula, France and Italy. Looking at the final 
simulations, it is obvious that almost all of the model's intense failures have disappeared. There is a 
convergence of the grid deviations and a general smoothing without severe failures. The confined 
regions for model’s underestimation in January are located in central and northern Italy as well as 
the far east end of Europe, while model’s overestimation is found again in Scandinavia. July 
prediction remains poor in a very small region of central Italy and north Spain with a relatively 
significant underestimation, while overestimation is found in south Hungary and in the Balkans, 
locally. 

There is no particular model deviation trend for the precipitation during January. However, 
significant underestimation is noticed localy in central UK, central Italy and Greece (Figure 4) and 
overestimation in central and North UK, north Italy, east Scandinavia and some parts of the Balkans.  
During July underestimation is noticed in central and Eastern Europe, locally while overestimation 
is found in Italy, west Greece and eastern Spain, locally. Although the strategy we pursued had the 
improvement of the temperature forecast as a central axis, we can see that the forecast for average 
precipitation has also improved to a certain extent.  

 

5. Conclusions  

PBL Bougeault–Lacarrere Scheme [29] in cooperation with the MM5 [30] Surface Layer Scheme 
had the best performance in predicting January and July temperature and a moderate rank for 
precipitation. The Yonsei University Scheme [36] is the second best choice as far as temperature 
prediction is concerned and winter precipitation too. If our strategy had precipitation prediction as 
its main axis, then the MRF/MM5 [48]/[30] combination (option 99) would be the choice we would 
have made. 

The default Kain–Fritsch Scheme [31] gave the best results as the Cumulus parameterization 
scheme similar to the OSAS Old Simplified Arakawa–Schubert [32] ranking but the first was our 
shceme of choice as it performed better for January precipitation. 

 
Option  JANUARY JULY 
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Simulation 
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Figure 3. Temperature Mean Bias spatial distribution after each simulation step. 
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Simulation 
with the model’s 
default options 
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Figure 4. Precipitation Mean Bias spatial distribution after each simulation step. 
 
 

RRTMG Longwave fast version Scheme [33] scored the highest for temperature prediction and 
moderately for precipitation. The non fast version of the RRTMG scheme would be our choice if our 
steps were precipitation driven. For shortwave radiation scheme we chose the New Goddard [35] 
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which had a similar performance with the CAM Scheme [56]. The spatial distribution improvement 
of the New Goddard scheme was far better for July temperature prediction establishing it as our 
choice. The GFDL Shortwave Scheme [58] had the highest rank in predicting precipitation for both 
January and July. 
 Our final simulation group assessed the effect of the Land Surface modelPleim–Xiu Land 
Surface Model [64] performed best in predicting January temperature but poorly for July where the 
RUC Land Surface Model [62] produced the best results. As far as precipitation is concerned Unified 
Noah Land Surface Model [61] and the 5–layer Thermal Diffusion [60] performed best for January 
and July precipitation, respectively. To set up the model for a multiseasonal downscaling study one 
should choose the best performing Land Surface model for each season.  

Acknowledgments:  

This work was supported by the EU LIFE CLIMATREE project “A novel approach for accounting & monitoring 
carbon sequestration of tree crops and their potential as carbon sink areas” (LIFE14 CCM/GR/000635).  

References 

1. Skamarock, W.C., et al., A description of the Advanced Research WRF Version 3. 2008. p. 1-113. 
2. Mooney, P.A., F.J. Mulligan, and R. Fealy, Evaluation of the Sensitivity of the Weather Research and 

Forecasting Model to Parameterization Schemes for Regional Climates of Europe over the Period 1990–95. 
Journal of Climate, 2013. 26(3): p. 1002-1017. 

3. Borge, R., et al., A comprehensive sensitivity analysis of the WRF model for air quality applications over the 
Iberian Peninsula. Atmospheric Environment, 2008. 42(37): p. 8560-8574. 

4. Bukovsky, M.S. and D.J. Karoly, Precipitation Simulations Using WRF as a Nested Regional Climate Model. 
Journal of Applied Meteorology and Climatology, 2009. 48(10): p. 2152-2159. 

5. Jin, J., N.L. Miller, and N. Schlegel, Sensitivity Study of Four Land Surface Schemes in the WRF Model. 
Advances in Meteorology, 2010. 2010: p. 11. 

6. Flaounas, E., S. Bastin, and S. Janicot, Regional climate modelling of the 2006 West African monsoon: 
sensitivity to convection and planetary boundary layer parameterisation using WRF. Climate Dynamics, 2011. 
36(5): p. 1083-1105. 

7. Haylock, M.R., et al., A European daily high-resolution gridded data set of surface temperature and 
precipitation for 1950–2006. Journal of Geophysical Research: Atmospheres, 2008. 113(D20): p. n/a-n/a. 

8. van den Besselaar, E.J.M., et al., A European daily high-resolution observational gridded data set of sea level 
pressure. Journal of Geophysical Research: Atmospheres, 2011. 116(D11): p. n/a-n/a. 

9. Dudhia, J.; Available from: http://www2.mmm.ucar.edu/wrf/users/tutorial/201601/physics.pdf  
10. Hwang, C.L. and K. Yoon, Multiple attribute decision making: methods and applications : a state-of-the-art 

survey. 1981: Springer-Verlag. 
11. Yoon, K., A Reconciliation Among Discrete Compromise Solutions. Journal of the Operational Research 

Society, 1987. 38(3): p. 277-286. 
12. Hwang, C.-L., Y.-J. Lai, and T.-Y. Liu, A new approach for multiple objective decision making. Computers & 

Operations Research, 1993. 20(8): p. 889-899. 
13. Shannon, C.E., A mathematical theory of communication. The Bell System Technical Journal, 1948. 27(3): 

p. 379-423. 
14. Mansell, E.R., C.L. Ziegler, and E.C. Bruning, Simulated Electrification of a Small Thunderstorm with Two-

Moment Bulk Microphysics. Journal of the Atmospheric Sciences, 2010. 67(1): p. 171-194. 
15. Kessler, E., On the continuity and distribution of water substance in atmospheric circulations. Atmospheric 

Research, 1995. 38(1): p. 109-145. 
16. Lin, Y.-L., R.D. Farley, and H.D. Orville, Bulk Parameterization of the Snow Field in a Cloud Model. Journal 

of Climate and Applied Meteorology, 1983. 22(6): p. 1065-1092. 
17. Hong, S.-Y., J. Dudhia, and S.-H. Chen, A Revised Approach to Ice Microphysical Processes for the Bulk 

Parameterization of Clouds and Precipitation. Monthly Weather Review, 2004. 132(1): p. 103-120. 
18. Hong, S.-Y. and J.-O. Lim, The {WRF} Single-Moment 6-Class Microphysics Scheme {(WSM6)}. J. Korean 

Meteor. Soc., 2006. 42(2): p. 129-151. 
19. Tao, W.-K., J. Simpson, and M. McCumber, An Ice-Water Saturation Adjustment. Monthly Weather 

Review, 1989. 117(1): p. 231-235. 



The 2nd International Electronic Conference on Atmospheric Sciences (ECAS 2017), 16–31 July 2017;  Sciforum Electronic 
Conference Series, Vol. 2, 2017  
 

14 
 

20. Thompson, G., et al., Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. 
Part II: Implementation of a New Snow Parameterization. Monthly Weather Review, 2008. 136(12): p. 5095-
5115. 

21. Milbrandt, J.A. and M.K. Yau, A Multimoment Bulk Microphysics Parameterization. Part I: Analysis of the 
Role of the Spectral Shape Parameter. Journal of the Atmospheric Sciences, 2005. 62(9): p. 3051-3064. 

22. Milbrandt, J.A. and M.K. Yau, A Multimoment Bulk Microphysics Parameterization. Part II: A Proposed 
Three-Moment Closure and Scheme Description. Journal of the Atmospheric Sciences, 2005. 62(9): p. 3065-
3081. 

23. Morrison, H., G. Thompson, and V. Tatarskii, Impact of Cloud Microphysics on the Development of Trailing 
Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Monthly 
Weather Review, 2009. 137(3): p. 991-1007. 

24. Eaton, B., "User’s Guide to the Community Atmosphere Model CAM-5.1.". NCAR. URL 
http://www.cesm.ucar.edu/models/cesm1.0/cam, 2011. 

25. Lin, Y. and B.A. Colle, A New Bulk Microphysical Scheme That Includes Riming Intensity and Temperature-
Dependent Ice Characteristics. Monthly Weather Review, 2011. 139(3): p. 1013-1035. 

26. Lim, K.-S.S. and S.-Y. Hong, Development of an Effective Double-Moment Cloud Microphysics Scheme with 
Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Monthly Weather Review, 
2010. 138(5): p. 1587-1612. 

27. Gilmore, M.S., J.M. Straka, and E.N. Rasmussen, Precipitation Uncertainty Due to Variations in 
Precipitation Particle Parameters within a Simple Microphysics Scheme. Monthly Weather Review, 2004. 
132(11): p. 2610-2627. 

28. Thompson, G. and T. Eidhammer, A Study of Aerosol Impacts on Clouds and Precipitation Development in 
a Large Winter Cyclone. Journal of the Atmospheric Sciences, 2014. 71(10): p. 3636-3658. 

29. Bougeault, P. and P. Lacarrere, Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale 
Model. Monthly Weather Review, 1989. 117(8): p. 1872-1890. 

30. Beljaars, A.C.M., The parametrization of surface fluxes in large-scale models under free convection. Quarterly 
Journal of the Royal Meteorological Society, 1995. 121(522): p. 255-270. 

31. Kain, J.S., The Kain–Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 
2004. 43(1): p. 170-181. 

32. Pan, H.L. and W. S. Wu., Implementing a mass flux convective parameterization package for the NMC medium 
range forecast model. NMC office note, 409.40, 20–233.1995 

 
33. Iacono, M.J., et al., Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative 

transfer models. Journal of Geophysical Research: Atmospheres, 2008. 113(D13): p. D13103. 
34. Räisänen, P., H.W. Barker, and J.N.S. Cole, The Monte Carlo Independent Column Approximation’s 

Conditional Random Noise: Impact on Simulated Climate. Journal of Climate, 2005. 18(22): p. 4715-4730. 
35. Chou, Ming–Dah, and Max J. Suarez, A solar radiation parameterization for atmospheric studies. NASA Tech. 

Memo 104606 40. 1999. 
36. Hong, S.-Y., Y. Noh, and J. Dudhia, A New Vertical Diffusion Package with an Explicit Treatment of 

Entrainment Processes. Monthly Weather Review, 2006. 134(9): p. 2318-2341. 
37. Janjić, Z.I., The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous 

Sublayer, and Turbulence Closure Schemes. Monthly Weather Review, 1994. 122(5): p. 927-945. 
38. Janjic, Z.I., The surface layer in the NCEP Eta Model. Eleventh conference on numerical weather 

prediction, Norfolk, VA, 19-23 August Amer Meteor Soc, Boston, MA, 1996: p. 354-355. 
39. Sukoriansky, B.G. S., and V. Perov, Application of a new spectral model of stratified turbulence to the 

atmospheric boundary layer over sea ice. Bound.–Layer Meteor., 117, 231–257. 2005. 
40. Nakanishi, M. and H. Niino, An improved Mellor–Yamada level 3 model: its numerical stability and 

application to a regional prediction of advecting fog. Bound. Layer Meteor. 119, 397–407.2006 
 
41. Nakanishi, M. and H. Niino, Development of an improved turbulence closure model for the atmospheric 

boundary layer. J. Meteor. Soc. Japan, 87, 895–912. 2009. 
42. Pleim, J.E., A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model 

Description and Testing. Journal of Applied Meteorology and Climatology, 2007. 46(9): p. 1383-1395. 
43. Pleim, J.E., A simple, efficient solution of flux-profile relationships in the atmospheric surface layer, J. Appl. 

Meteor. and Clim., 45, 341–347.2006 
 



The 2nd International Electronic Conference on Atmospheric Sciences (ECAS 2017), 16–31 July 2017;  Sciforum Electronic 
Conference Series, Vol. 2, 2017  
 

15 
 

44. Bretherton, C.S. and S. Park, A New Moist Turbulence Parameterization in the Community Atmosphere 
Model. Journal of Climate, 2009. 22(12): p. 3422-3448. 

45. Angevine, W.M., H. Jiang, and T. Mauritsen, Performance of an Eddy Diffusivity–Mass Flux Scheme for 
Shallow Cumulus Boundary Layers. Monthly Weather Review, 2010. 138(7): p. 2895-2912. 

46. Shin, H.H. and S.-Y. Hong, Representation of the Subgrid-Scale Turbulent Transport in Convective Boundary 
Layers at Gray-Zone Resolutions. Monthly Weather Review, 2015. 143(1): p. 250-271. 

47. Grenier, H. and C.S. Bretherton, A Moist PBL Parameterization for Large-Scale Models and Its Application 
to Subtropical Cloud-Topped Marine Boundary Layers. Monthly Weather Review, 2001. 129(3): p. 357-377. 

48. Hong, S.-Y. and H.-L. Pan, Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. 
Monthly Weather Review, 1996. 124(10): p. 2322-2339. 

49. Grell, G.A. and S.R. Freitas, A scale and aerosol aware stochastic convective parameterization for weather and 
air quality modeling. Atmos. Chem. Phys., 2014. 14(10): p. 5233-5250. 

50. Grell, G.A. and D. Dévényi, A generalized approach to parameterizing convection combining ensemble and 
data assimilation techniques. Geophysical Research Letters, 2002. 29(14): p. 38-1-38-4. 

51. Tiedtke, M., A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models. 
Monthly Weather Review, 1989. 117(8): p. 1779-1800. 

52. Han, J. and H.-L. Pan, Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast 
System. Weather and Forecasting, 2011. 26(4): p. 520-533. 

53. Zhang, C., Y. Wang, and K. Hamilton, Improved Representation of Boundary Layer Clouds over the Southeast 
Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme. Monthly Weather 
Review, 2011. 139(11): p. 3489-3513. 

54. Kain, J.S. and J.M. Fritsch, A One-Dimensional Entraining/Detraining Plume Model and Its Application in 
Convective Parameterization. Journal of the Atmospheric Sciences, 1990. 47(23): p. 2784-2802. 

55. Mlawer, E.J., et al., Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model 
for the longwave. Journal of Geophysical Research: Atmospheres, 1997. 102(D14): p. 16663-16682. 

56. Collins, W.D., et al., , Description of the NCAR Community Atmosphere Model (CAM 3.0). NCAR Tech. Note 
NCAR/TN–464+STR. 214 pp. 2004. 

57. Fu, Q. and K.N. Liou, On the Correlated k-Distribution Method for Radiative Transfer in Nonhomogeneous 
Atmospheres. Journal of the Atmospheric Sciences, 1992. 49(22): p. 2139-2156. 

58. Fels, S.B. and M.D. Schwarzkopf, An efficient, accurate algorithm for calculating CO2 15 μm band cooling 
rates. Journal of Geophysical Research: Oceans, 1981. 86(C2): p. 1205-1232. 

59. Dudhia, J., Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a 
Mesoscale Two-Dimensional Model. Journal of the Atmospheric Sciences, 1989. 46(20): p. 3077-3107. 

60. Dudhia, J. A multi-layer soil temperature model for MM5. in Preprints, The Sixth PSU/NCAR mesoscale model 
users’ workshop. 1996. 

61. Tewari, M., et al., Implementation and verification of the unified NOAH land surface model in the WRF model. 
20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–
15. 2004. 

62. Benjamin, et al., Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate 
model. Mon. Wea. Rev., 132, 473-494. 2004. 

63. Niu, G.-Y., et al., The community Noah land surface model with multiparameterization options (Noah-MP): 1. 
Model description and evaluation with local-scale measurements. Journal of Geophysical Research: 
Atmospheres, 2011. 116(D12): p. n/a-n/a. 

64. Pleim, J.E. and A. Xiu, Development and Testing of a Surface Flux and Planetary Boundary Layer Model for 
Application in Mesoscale Models. Journal of Applied Meteorology, 1995. 34(1): p. 16-32. 

 

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons by 
Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


