Quantitative time-stretch imaging flow cytometry
for high-throughput cell-cycle analysis
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We present an image-based cell-cycle analysis at single-cell precision measured by a multimodal
time-stretch imaging flow cytometer with a throughput >10,000 cells/sec. Flow cytometry is a potent
tool for cellular phenotyping, which hold the keys to understand cellular functions [1]. However, it
lacks the ability to detect and quantify biophysical phenotypes of cells, an effective intrinsic marker to
probe a multitude of cellular processes. A notable example is cell growth, regarded as “one of the last
big unsolved problems in cell biology” [2]. Although quantitative-phase microscopy (QPM) enables
cell growth studies by quantifying the cell size and dry mass in a label-free manner, it has largely been
restricted to adherent cell analysis with a low imaging throughput of ~100’s cells [3,4]. This limitation
hampers high-throughput single-cell analysis which is now an unmet need in detection and analysis of
rare metastatic cancer cells in a large population (thousands to even millions of cells) [3-6].

Leveraging its ultrafast frame rate, biophysical single-cell imaging based on time-stretch technology
has shown its potential in scaling the imaging throughput by at least 2 orders of magnitude higher than
the current techniques [7-9]. Here we present a further advancement by developing a multimodal
time-stretch imaging flow cytometer for high-throughput image-based cell cycle analysis of cancer
cells (metastatic breast cancer cell line, MDA-MB-231). The system features both QPM and
fluorescence detection of individual suspended cells, flowing in a polydimethylsiloxane-based
microfluidic channel at a high throughput of 10,000 cells/sec. Its configuration is similar to that
reported in ref. [8-10] except an additional module for fluorescence excitation and detection. Fig. 1
shows some representative bright-field and quantitative-phase cell images captured by the system.

Not only can the system performs biophysical phenotyping inferred from the QPM, but also quantify
the DNA content of single-cells with DNA-specific fluorescence labels. The combined information
can be utilized for cell-growth monitoring and characterization of cell-cycle phases. The fluorescence
signal is first used to identify the cell-cycle phase of individual cells and revealed the distribution of
the cell-cycle phases in the whole population with G1/S/G2M phase, as 57.3%, 18.4% and 24.3%
respectively (Inset of Fig. 2). Cell growth is then quantified by the cell dry mass which represents the
protein content of each cell [11]. Throughout the cell-cycle, a progressive increase in dry mass from
G1 (286+4 pg), via S (35748 pg) to G2/M (438+11 pg) is observed (p <0.01) (Fig. 2). Furthermore,
our analysis combining dry mass and fluorescence signal reveals that faster cell growth occurs in G1
and G2/M phases, in comparison to that during the S phase. It is consistent to the dominating action of
DNA content duplication in this phase [12]. In summary, this integrated time-stretch imaging flow
cytometer (QPM plus fluorescence detection) presents a powerful tool for large-scale single-cell
analysis based on both molecular signatures (e.g. DNA content) and biophysical markers (e.g. dry
mass) — opening a new paradigm in single-cell analysis of basic biology and new mechanistic insights
into disease processes, not limited to cancer cell growth.



Fig. 1. Bright-field and quantitative phase images of cell in
different cell cycle phase are shown with scale bar
representing 10 pm. Red contour indicating the cell
boundary.
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Fig 2. Dry mass in different cell-cycle phases. Dry mass
increases from phase G1 at 286 + 4 pg (¢ =0.01, n =986) to
phase S at 357 + 8 pg (o = 0.01, n = 305), and finally G2/M
phase at 438 + 11 pg (= 0.01, n=417). (Inset) Distribution
of the fluorescence intensities based on 1,708 cells.
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Fig 3. Dry mass versus normalized fluorescence intensity on
the same data set shown in Fig. 2 (n = 1,708).
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