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Abstract.  

Nanoparticulate NiO and

with different carbon proportions have been 

prepared for anode application in lithium and 

sodium ion batteries. Structural characterization 

demonstrated the presence of metallic Ni in the 

composites. Morphological study revealed that 

the NiO and Ni nanoparticles were well 

dispersed in the matrix of amorphous carbon. 

The electrochemical study showed that 

lithium ion batteries (LIBs) containing

composites with carbon have promising 

electrochemical performances 

specific discharge capacities of 550 mAh/g after 

operating for 100 cycles at 1C. These excellent 

results could be explained by the homogeneity 

of particle size and structure as well as the 

uniform distribution of NiO/Ni nanoparticles in 

the in situ generated amorphous carbon 

On the other hand, the sodium ion battery (NIB) 

with the NiO/C composite revealed a poor 

cycling stability. Post-mortem analyses revealed 

that this fact could be ascribed to the absence of 

a stable SEI or passivation layer upon cycling
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Introduction  

.As one of the most important and widely used rechargeable power sources, lithium ion batteries 

(LIBs) have been widely used in portable electronics, electric vehicles (EVs) and hybrid electric 

vehicles(HEVs)14 .  

Additionally, they are supposed to be one of the most promising candidates for next generation power 

sources. Besides of LIBs, recently, sodium ion batteries (NIBs) have received increased attention as an 

alternative to LIBs for stationary storage due to the abundance and low cost of Na. Actually, NIBs 

were initially studied when the development of LIBs began in the 1970s, but due to the fast advances 

in the development of LIBs, NIBs were unregarded5.  Even if the fundamental principles of the NIBs 

and LIBs are almost the same, NIBs usually exhibit low specific capacities, short cycle lifes and poor 

rate capabilities due to increased radius and mass of Na (1.02Å, 22.99 g/mol) compared to that of Li 

(0.59Å, 6.94 g/mol) 6. Additionally, sodium has a higher standard electrode potential compared to 

lithium (-2.71 V vs SHE as compared to -3.02 V vs SHE for lithium). Consequently, NIBs will often 

fall short in terms of energy7. Nevertheless, the weight of cyclable lithium and sodium is only a small 

part of the mass of the components of the electrode. 

Nowadays, even if graphite is the most widely used anode material due to its low cost, high 

abundance, and outstanding electrochemical performance, this material exhibits a theoretical capacity 

of 372 mAh/g. Consequently, in order to fulfill the requirements as to large scale applications, higher 

energy density systems need to be developed. This purpose implies the necessity of denser and higher 

capacity anode materials are needed.  

In this sense, 3d transition metal oxides (MOx) are among one of the most promising next-generation 

anode materials under consideration due to their low cost, high theoretical capacities (500-1000 

mAh/g) and easy fabrication 8,9. 

NiO has been regarded as one of the most popular choices of metal oxides due to its high theoretical 

capacity (718 mAh/g), high corrosion resistance and low materials and processing costs10. However, 

further optimization of nickel oxides as anode materials is needed due to their poor capacity retention 

or rate capability owed to low electric conductivity and large volume change during the conversion 

reaction11,12. 

Even if transition metal oxides have been extensively studied in LIBs, only a few metal oxides have 

been studied for application in NIBs 13 , 14 . Among these studies, some previous reports have 

demonstrated the potential application of NiO in NIBs15. Meanwhile, other researchers have revealed 

the electrochemical inactivity of NiO with Na, while exhibiting outstanding performances in LIBs. In 

this regard, the reason why this is happening is not clearly understood yet16. As far as we are aware, 

very little research has been done in the field of NiO anodes for NIBs application up to now. 

In this study, three different composites based on nanosized NiO and carbon, were successfully 

synthesized by the freeze-drying method. We report on the structural, morphologic, magnetic, 

spectroscopic and electrochemical characterization (vs Li and Na) of the synthesized samples, 

establishing correlations among the composition, morphology and electrochemical performance. 

Particular attention has been paid to the post-mortem analysis of  NIBs in order to understand why the 

same material behaves differently when applied as anode for LIBs and NIBs. 

Materials and Methods  

Three nickel oxide samples were synthesized by the freeze-drying method. For the sample designated 

NiO_air only Ni(NO3)2·6 H2O was dissolved in 25 ml of water. For the other two samples 
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C6H8O7·H2O and Ni(NO3)2·6 H2O reagents were added in the molar ratios of 0.25:1 and 1:1, in order 

to produce composites with different carbon contents. The resulting solutions were subsequently 

frozen in a round-bottom flask that contained liquid nitrogen. Afterwards, the round bottom flasks 

were connected to the freeze-dryer for 48 h at a pressure of 3·10-1 mbar and a temperature of -80ºC to 

sublime the solvent. The as-obtained precursors were subjected to a single heat treatment at 400ºC for 

6h. The heat treatment of the NiO_air sample was carried out in air while the other two samples were 

calcined in a nitrogen atmosphere. Subsequently, the products were ball-milled for 30 minutes.  

A Perkin-Elmer 2400CHN analyzer was employed to determine the carbon content of the samples. 

Structural characterization of the samples was carried out using X-ray powder diffraction with a 

Bruker D8 Advance Vario diffractometer using CuK radiation. The obtained diffractograms were 

profile-fitted using the FullProf program 17 . The morphologies of the materials were studied by 

Transmission Electron Microscopy (TEM) using a FEI TECNAI F30 and by a scanning electron 

microscope (JEOL JSM 7500F) and by Scanning Electron Microscopy (SEM) (JEOL JSM 7500F). 

Magnetic susceptibility measurements (dc) were carried out at 300K with a Quantum Design SQUID 

magnetometer. X-ray photoelectron spectra were (XPS) were obtained on a SPECS system equipped 

with a Phoibos 150 1D-DLD analyzer and a monochromatic AlK (1486.6 eV) source. Raman 

spectroscopy was carried out using a InVia Raman spectrometer using Ar+ laser excitation with a 

wavelength of 514 nm. 

2032 coin cells were assembled to evaluate the electrochemical performances of the samples. To 

prepare the electrodes, the active materials were mixed with conducting carbon black (Super P, 

Timcal) and polyvinylidene fluoride (PVDF) binder with weight ratios of 70:15:15 and dispersed in N-

methyl-2-pyrrolidone (NMP) to form a slurry. The slurry was then cast onto Cu current collectors and 

dried at 120ºC in a vacuum oven overnight. For the lithium ion batteries, electrochemical cells with 

metallic lithium foils as counter electrodes, Celgard 2400 polypropylene separators and 1 M LiPF6 in 

50%-50% ethyl carbonate (EC) and dimethyl carbonate (DMC) as the electrolytic solution, were 

assembled in an Ar-filled glove box. For the sodium ion batteries, metallic sodium foils were used as 

counter electrodes. The electrolyte was 1 M NaPF6 in 50%-50% ethyl carbonate (EC) and dimethyl 

carbonate (DMC) solution with 1 wt % FEC All the electrochemical and electrochemical 

measurements were carried out on a Bio-Logic VMP3 potentiostat/galvanostat at room temperature. 

Typical electrode loadings were 1.3 mg/cm2.  

Results and Discussion  

.Elemental analysis revealed that the samples contained an average amount of carbon of 0, 18 and 

29%. Accordingly, the samples were called NiO_18%C, NiO_29%C and NiO_air as this material was 

calcined in air.  

The structural characterization by XRD showed that for the NiO_air sample, all of the diffraction 

peaks could be indexed to pure phase cubic nickel oxide. No additional reflections were detected 

indicating the absence of impurities. In the case of NiO_18%C two weak reflections can be detected at 

245º and 53º corresponding to metallic nickel (Powder Diffraction File 88-2326 PDF card). 

However, different from NiO_air and NiO_18%C samples, the diffraction maxima of NiO_29%C 

composite appears to have less intensity and higher broadening. Additionally, the reflections 

corresponding to metallic nickel have higher intensity in this sample than in the former ones. This 

could be attributed to the higher amount of carbon in this sample, as it probably has led to a more 

reducing atmosphere and consequently, a higher amount of Ni (II) has been reduced to Ni(0). 
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SEM images allowed asserting that the NiO_air sample is composed of irregularly shaped particles 

with a wide range of size (5-50 nm). In the same way, NiO_18%C and NiO_29%C composites seemed 

to contain nanoparticles homogeneously dispersed in the in situ generated carbon matrix. In order to 

further investigate that morphology, TEM measurements were carried out. 

transmission electron micrographs of the NiO_air, NiO_18%C and NiO_29

deduced that the NiO_29%C composite

embedded in the in situ generated carbon matrix. The particle size of NiO_29%C sample was the 

smallest of all the samples as the high amount

of particle size. 

. 

Figure 1.TEM images of a) NiO_air, b) NiO_18%C and c) NiO_29%C samples.

The magnetic hysteresis loops at room  temperature of the NiO_air, NiO_18%C and NiO_29%C

samples exhibited that the samples contain <1, 5 and 41% of metallic nickel, respectively.

hand, Raman spectroscopy measurements showed that 

typical Raman spectrum of non-graphitic carbons. Both of them sh

located at 1600 cm-1 which corresponds to the G

other band located at 1340 cm-1, D

of the D band indicates that the in situ generated carbon is a typically non

To evaluate the electrochemical performance, lithium half

and NiO_29%C composite materials were discharged at current densities corresponding to 

1C rates. 

 

Figure 2. First discharge curves for NiO_air, NiO_18%C and NiO_29%C at C/10

As it can be seen, NiO_29%C composite

as it has a smaller particle size, a more homogeneous appearance and higher carbon and metallic nickel 
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contents. Due to the synergistic effect that these factors could produce, the electrochemical behavior of 

NiO_29%C is better in all aspects.

NiO_29%C composite was selected to test it versus metallic sodium due to its good lithium storage 

behavior. Figure 3 shows the first two discharge

at C/10. As it can be observed, the capacity drastically decays from the third

 

Figure 3. Cyclability of  NiO_29%C sample
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composite contains is another important factor to be considered since the storage of Na into carbon is 

very limited. Consequently, the diffusion pathways could be blocked promoting the deterioration of the 

kinetics of the conversion reaction.  
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