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Graphical Abstract 

Selectivity in Anti-infective Minor Groove Binders 
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The Minor Groove Binder 



Abstract: Minor groove binders for DNA synthesised at the University of 
Strathclyde (S-MGBs) have been successfully shown to be active against a wide 
range of infectious organisms including bacteria, fungi, and parasites in particular 
through collaborations with a worldwide network of partners. S-MGBs can be 
obtained from a wide range of structures and physicochemical properties that 
influence the S-MGB’s effect on a given class of target organism. A dominant 
feature that determines selectivity is access of the S-MGB to the DNA of the target 
organism which requires passing through the external cell membrane or cell wall. 
Experiments have shown that S-MGBs containing alkene links in place of an amide 
are in general most effective against all the infective agents studied but significant 
activity against some fungi has also been observed in S-MGBs with amidine links. 
More subtle effects in anti-fungal activity have also been observed relating to the 
structure of the fungal cell wall. In the case of M. tuberculososis, improved 
selectivity indices were obtained using non-ionic surfactant vesicles in the 
formulation. Together these results are helpful to identify clusters of S-MGBs that 
can be optimised to be selective against a given infectious agent. 
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Introduction 
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Minor Groove Binders (MGBs) are a class of compound that exert their 
biological effects through binding to the minor groove of DNA. 
 
The MGB drug discovery platform at the University of Strathclyde is based upon 
the polyamide natural product, distamycin, and the related compound 
netropsin. 



Analysis of Structure and Design Concept 
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The structure of distamycin can be conceptually reduced to the following graphic 

The synthetic strategy for our MGBs involves the sequential coupling of units from 
the tail group end. 
We have assembled a library of over 400 MGBs through systematically varying key 
structural features of the core MGB structure. These are outlined over the next 
few slides. 

Infographic Structure 



Types of Variation Introduced 
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Head Group Diversification Tail Group Diversification 

Linker Diversification Heterocycle Diversification 



Multiple Permutations Available 
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Infographic scheme 



Results and Discussion 
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Over a period of many years, our library of MGBs has been evaluated against a wide 
variety pathogenic organisms. These are outlined below. 

The following section describes the features of the most active MGBs against each 
organism, and highlights their significance. 

Type of Organism Organism 

Bacteria Gram +ve: Staphylococcus aureus, Clostridium difficile 

Gram –ve: Escherichia coli 

Mycobacteria: Mycobacterium tuberculosis 

Parasites Trypanosoma brucei brucei 

Trypanosoma congolense 

Trypanosoma vivax 

Plasmodium facliparum 

Fungi Candida albicans 

Cryptococcus neoformans 



Antibacterial MGBs: Gram-Positive Bacteria 
Iain Hunter and Nick Tucker, University of Strathclyde 
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Divergence from Distamycin: 
1. Less basic morpholine tail group 
2. Phenyl replaces pyrrolyl 
3. Alkene replaces amide head group link 
4. Large head group 

1 

2 

3 

4 

Activity Summary: 
1. Sub-µM in vitro MICs against many 
Gram +ves 
2. Successful phase I clinical trial for 
Clostridium difficile infections  
3. Alkenyl MGBs are fluorescent 
allowing demonstrable entry into Gram 
+ve bacterial cells (see panel lower 
left). S. aureus           

under UV 

MGB No MGB 



Antibacterial MGBs: Gram-Negative Bacteria 
Iain Hunter and Nick Tucker, University of Strathclyde 
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S. aureus (Gram +ve)  E. coli Spheroplast  
(cell wall removed) 

E. coli  (Gram –ve) 

Typical Gram-positive active MGBs show little Gram-negative activity. 
Below shows different cells being treated with a fluorescent MGB 

When the outer Gram-negative bacterial cell wall is removed, MGBs can enter. 
Lack of Gram-negative activity may be due to poor penetration of bacterial cells. 

Brightfield 

Fluorescence 

MGB ENTERS MGB ENTERS NO ENTRY 



Antibacterial MGBs: Mycobacterium tuberculosis 
Reto Guler, University of Cape Town Hlaka et al. (2017) J Antimicrob Chemother, doi:10.1093/jac/dkx326 
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Divergence from Distamycin: 
1. Phenyl replaces pyrrolyl 
2. Alkene replaces amide head group link 
3. Large head group 

Activity Summary: 
1. Single digit µM intracellular 
antimycobacterial activity using 
macrophages  
2. Penetrates mammalian cells then 
bacterial cells to achieve activity 
3. Vesicle formulation further enhances 
activity, presumably through further 
enhancing cellular penetration  
4. No notable toxicity on macrophages 

1 

2 

3 

Vesicle MGB formulation 
(NIVs) achieves activity 
comparable to that of 
standard therapy rifampicin 



Antiparasitic: Trypanosoma brucei brucei 
Michael Barrett, University of Glasgow Scott et al. (2016) Eur J Med Chem doi:10.1016/j.ejmech.2016.03.064 
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1 

2 

3 

4 Divergence from Distamycin: 
1. Less basic morpholine tail group 
2. Phenyl replaces pyrrolyl 
3. Alkene replaces amide head group link 
4. Large head group 

Activity Summary: 
1. IC50s < 40 nM in vitro  
2. Demonstrable entry into parasites 

and localisation within DNA-
containing organelles. 

A fluorescent MGB enters cells and concentrates in 
DNA-containing organelles (nucleus, N; kinetoplast, K) 



Antiparasitic: Trypanosoma congolense and vivax 
Michael Barrett, University of Glasgow 
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1 

2 

3 Divergence from Distamycin: 
1. Phenyl/pyridyl replaces pyrrolyl 
2. Alkene replaces amide head group link 
3. Large head group 

Activity Summary: 
1. ~100-300 nM in vitro IC50s 
2. Selectivity indices of 100-300 
3. Curative in in vivo mouse models 
4. No cross-resistance with common 
antiparsitics 
5. Demonstrable entry into parasites 
and localisation within DNA-containing 
organelles (see previous slide). 



Antiparasitic: Plasmodium falciparum 
Vicky Avery, Griffith University  Scott et al. (2016) Bioorg Med Chem Lett doi:10.1016/j.bmcl.2016.05.039 
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1 

2 

3 

4 

Divergence from Distamycin: 
1. Less basic morpholine tail group 
2. Thiazole also tolerated 
3. Phenyl replaces pyrrolyl 
4. Alkene replaces amide head group link 
5. Large head group 

Activity Summary: 
1. ~100 nM in vitro IC50s 
2. Active against chloroquine 
insensitive strains 
3. Selectivity indices >500 against 
mammalian cells 

5 



Antifungal: Candida albicans and Cryptococcus neoformans 
Michael Bromley, University of Manchester  Scott et al. (2017) Eur J Med Chem doi:10.1016/j.ejmech.2017.05.039 
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The outer chain mannans of C. albicans contain negatively charged phosphodiester 
links, absent from C. neoformans. 
The phosphodiester anion could sequester these MGBs through their dicationic 
nature at physiological pH, thus explaining the lack of activity.  

1 

2 

3 

4 Divergence from Distamycin: 
1. Less basic dimethylaminopropyl tail group 
2. Thiazolyl replaces pyrrolyl 
3. Amidine replaces amide head group link 
4. Large head group 

Activity Summary: 
1. MIC70 of 2 mg/mL against C. 
neoformans  
2. No observable activity against C. 
albicans  



Summary of SAR Across Organisms 
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Structural Feature Effect on Organism Selectivity 

Large head group No apparent selectivity, but all active compounds have a larger head 
group than distamycin 

Alkene head group link Generally increases activity against all organisms, but perhaps not 
for fungi 

Amide head group link Only effective against Trypanosoma brucei brucei 

Amidine head group link Only effective against Cryptococcus neoformans 

Pyrrole as first heterocycle Only effective against Cryptococcus neoformans 

Thiazole as third heterocycle Effective against Cryptococcus neoformans and Plasmodium 
falciparum 

Morpholine tail group Most active against Gram-positive bacteria, and Trypanosoma brucei 
brucei 

Dimethylaminopropyl tail 
group 

Necessary for activity against Cryptococcus neoformans 

Amidine tail group Necessary for activity against Mycobacterium tuberculosis, 
Trypanosoma congolense and Trypanosoma vivax 



Conclusions 
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Our MGB platform can provide significant active compounds for a wide range of pathogen 
organisms 
• Phase I clinical trials successfully completed for treatment of C. difficile 
• MGBs comparable to current treatments, in vitro, for M. tuberculosis and parasitic 

organisms 
 

As interacting with DNA is the mechanism of action of our MGBs, DNA binding strength is 
obviously important for activity; however, cell entry is also important. This explains 
organism selectivity. 
• MGBs significantly active against Gram-positive bacteria are not active against Gram-

negative, but removal of the cell wall restores activity 
• Selective activity between fungal species can be attributed to failure to penetrate cell 

wall 
 
We can now begin to design organism specific MGBs 
• Amide head group link only effective against T. brucei brucei 
• Combination of amidine head group link, thiazole as third heterocycle, and 

dimethylaminopropyl tail group leads to selective C. neoformans activity 
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