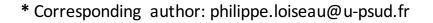


3rd International Electronic Conference on Medicinal Chemistry

1-30 November 2017 chaired by Dr. Jean Jacques Vanden Eynde

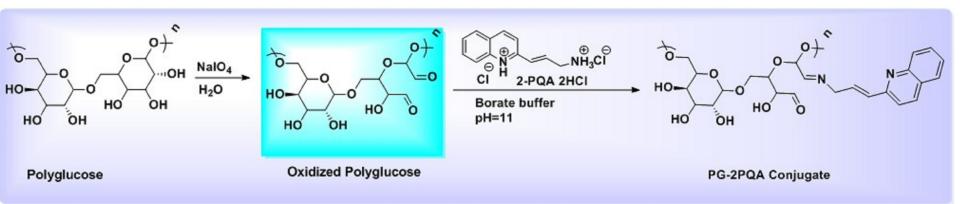
Drug targeting of natural products: the example of antileishmanial quinolines

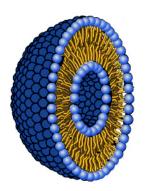
K. BALARAMAN^{1,2}, N. MEKARNIA¹, G. BARRATT¹, S. POMEL¹, S. COJEAN¹, V. KESAVAN², A. JAYAKRISHNAN², B. FIGADERE¹, <u>P.M. LOISEAU¹</u>



sponsored by

pharmaceuticals


¹Université Paris-Sud, France ²IIT, Madras, India



Drug targeting of natural products: the example of antileishmanial quinolines

Abstract:

Quinolines of natural origin have shown antileishmanial activities on several experimental leishmaniasis models. However, a classical daily treament with 2-*n*-propylquinoline (2-*n*-PQ) on five consecutive days in mice model is not sufficient to cure the mice infected with *Leishmania donovani* as the activity requires a 10-day treatment duration whatever the route (oral, parenteral) because of a short half-life elimination of the drug.

Therefore, 2-*n*-PQ derivatives were bound to soluble polysaccharides to improve their solubility, delay their elimination half-life and therefore enhance the activity. *In vitro*, the most active conjugate was the dextran-2PQA conjugate. However, this system did not allow a sufficient release of the active principle explaining the lack of *in vivo* activity.

Another approach consisted in administering 2-*n*-PQ intravenously. Two systems were successful both *in vitro* and *in vivo* : a liposomal formulation named 2-*n*-PQ-LIP and a hydroxypropyl beta-cyclodextrin inclusion complex designated as 2-*n*-PQ-HPC. The most interesting one was the liposomal formulation, active on the *L. donovani* Balb/c mouse model, by reducing the parasite burden by more than 80% after an intravenous treatment regimen of 3 mg equivalent 2-*n*-PQ/kg/day given on five consecutive days. These formulations should be studied further on other leishmaniasis models and for toxicological considerations.

Leishmaniases

Infectious diseases caused by Euglenozoa parasites from the genus Leishmania sp.

Human leishmaniases

CUTANEOUS/MUCOCUTANEOUS FORMS

VISCERALFORM

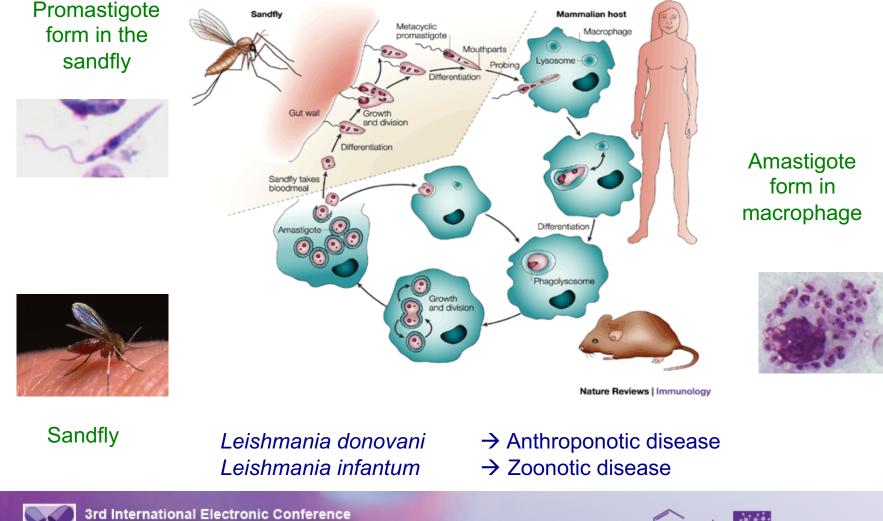
Localized cutaneous

Diffuse cutaneous

Muco-cutaneous

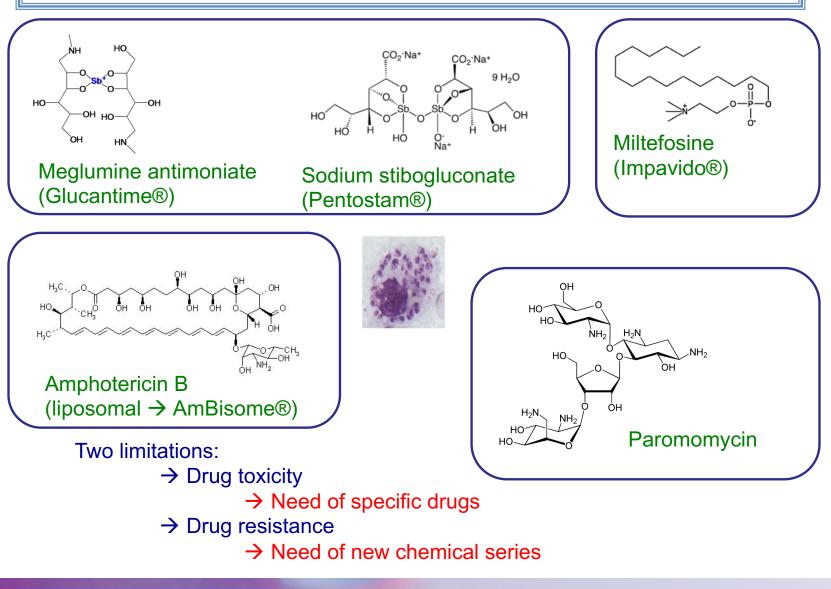
- -- 350.10⁶ persons at risk (Africa, South America, Asia, Southern Europe)
- 12.10⁶ cases worldwide and 2.10⁶ new cases per year (500 000 new cases of VL in India,

Bengladesh, Nepal, East Africa)



on Medicinal Chemistry

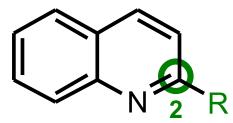
1-30 November 2017


Life cycle of Leishmania sp.

sponsors:

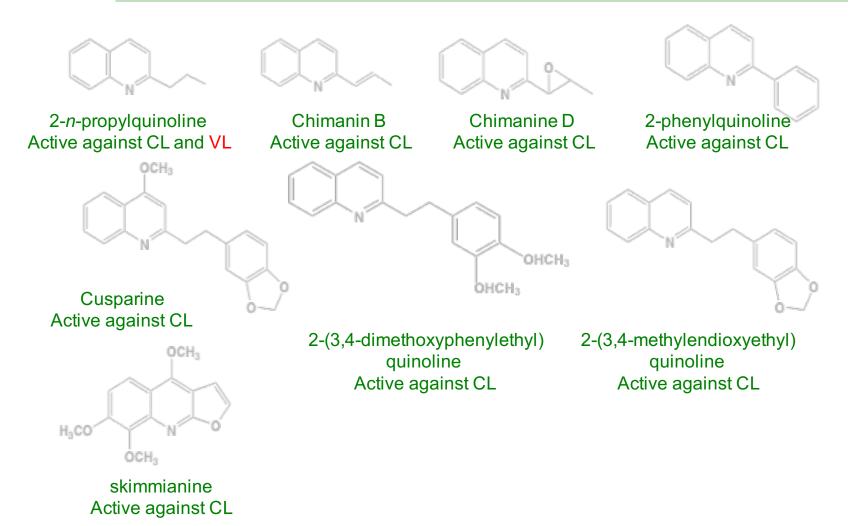
pharmaceuticals

Limitations of current treatments

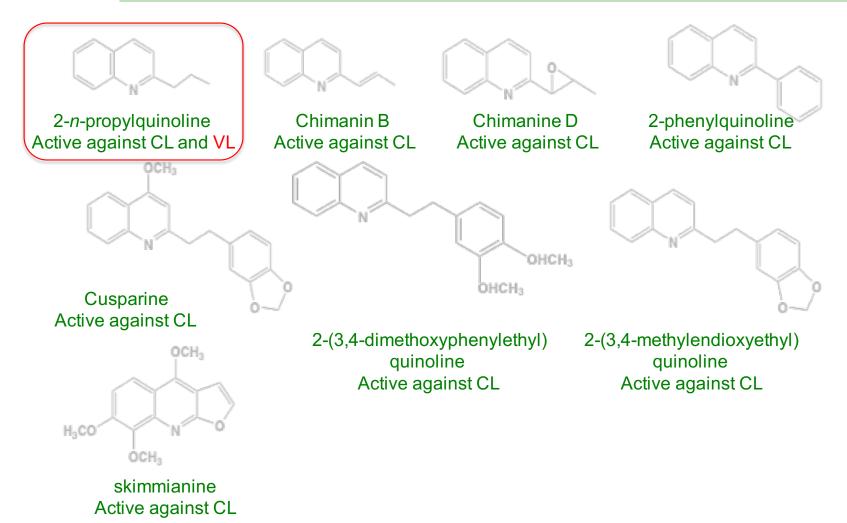


Ethnopharmacology as the source of antileishmanial quinolines

- Ethnopharmacological study in Bolivia
- Dialog between traditionnal practionners and scientists
- → Identification of bark of Galipea longiflora (Rutaceae)
 - → Traditionnaly used against Cutaneous Leishmaniasis (CL) lesions
 → Purification of 2-substituted quinolines


 \rightarrow Active by oral route on leishmaniasis experimental animal models

In vivo active 2-substituted-quinolines isolated from *G. longiflora*



sponsors.

pharmaceuticals

In vivo active 2-substituted-quinolines isolated from *G. longiflora*

sponsors.

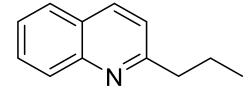
pharmaceuticals

Major data about 2-n-PQ

Chemical synthesis

→ Easy: two steps and good yield

Antileishmanial activity /toxicity


→ 2-*n*-PQ is active by intraperitoneal and oral routes on experimental visceral leishmaniasis models (*L. amazonensis, L. donovani*) at 10-12 mg/kg/day x 10 (Nakayama et al., AAC, 2005)

→ Absence of toxicity after oral/ip administration at 1g/kg in mice

Mechanism of action of 2-substituted quinolines on Leishmania

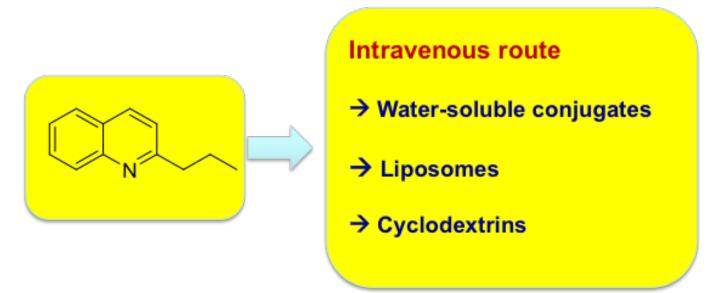
- → Alteration of parasite bioenergetics (Bompart et al., 2013)
 - → Disruption of mitochondrial electrochemical potential
 - → Alkalinization of acidocalcisomes
- → Partial inhibition of ergosterol biosynthetic pathway (Bompart et al., 2013)

sponsors

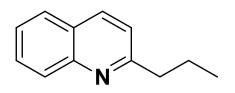
Comparative data of pharmacokinetics between antileishmanial quinolines

Substituted- quinolines	Compounds	PK after oral administration T _{1/2} absorption	PK after oral administration T _{1/2} elimination
8-amino-	Primaquine	1 h (human)	6.3 h (human)
8-amino-	Sitamaquine	1.5-3 h (human)	26.1 h (human)
8-amino-	Tafenoquine	1 h (human)	16.4 days (human)
2-substituted-	2- <i>n</i> -PQ	15 min (rat)	1.6 h (rat)

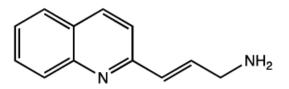
Drawback


\rightarrow Short half-life of elimination

Drug targeting as a strategy to enhance the 2-*n*-PQ biodistribution via intravenous route



 \rightarrow Developing an intravenous formulation as a prolonged drug release system for intravenous administration


2-n-PQ cannot be substituted to get polymers

 \rightarrow Necessity to synthesize an active derivative

2-Propylquinoline (2-PQ)

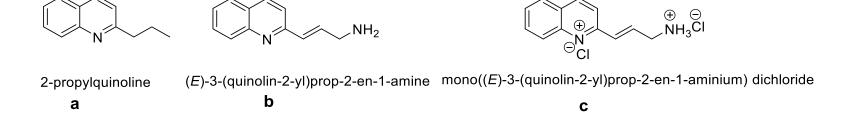
2-(2-amino-2-enyl)quinoline (2-PQA) = active derivative of 2-PQ

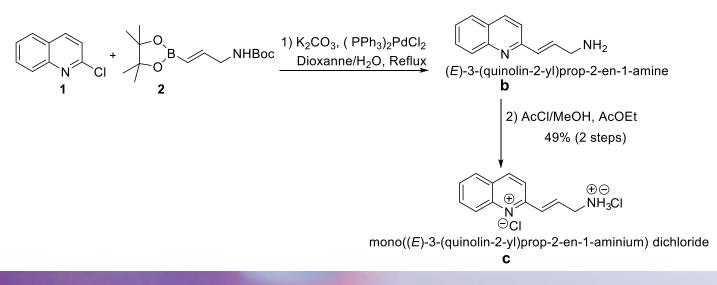
Conjugation of 2-PQA with water soluble bio-polymer such as polyglucose, gum arabic and dextran

What is the rationale for drug delivery ?

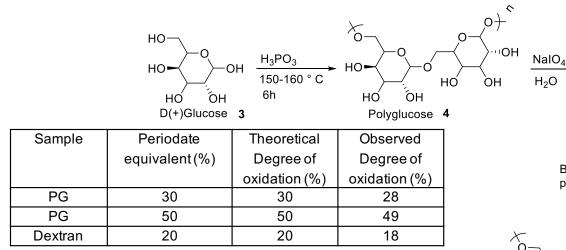
- The polymer protects the drug from enzymatic and chemical degradation

- The polymer reduces the rate of elimination of the drug owing to its high molecular weight, increasing the residence time of the drug


- The conjugation of the drug to the polymer promotes targeted drug delivery mainly to the sites in the body with increased capillary permeability such as inflamed tissues



Design of water-soluble polymers


Synthesis of compound 2PQA.2HCI

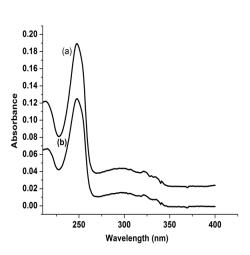
Conjugation of 2PQA to oxidized polyglucose (also oxidized dextran)

Periodate oxidation of polyglucose (PG) and dextran

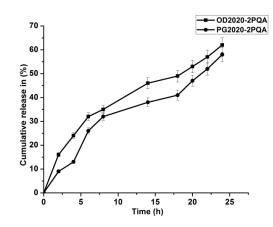
$\stackrel{\frown}{H_2O} \qquad \qquad$
Borate buffer pH=11 ↓ ⊕ ⊕ ⊕ CI N⊖ NH ₃ CI C

PG-2PQA imine Conjugate 6

	i	i	i
	Theoretical	Actual	Incorporation
Sample			•
-	loading (wt%)	loading (wt%)	efficiency(%)
	iouding (wt/o)	louding (wt/t)	
PG (50% oxidized)	20	18	90
PG (30% oxidized)	20	16	80
	20	10	00
Dextran (20%			
,	20	18	90
oxidized)			


Incorporation efficiency of 2PQA in polyglucose (PG) and dextran conjugates

Stability of the PG-2PQA conjugate


UV-visible spectrum of PG-2PQA soon after preparation (a) and after 6 month storage as lyophilized powder stored at 4°C (b)

→ Complete stability after a 6 month storage of the lyophilized powder at 4°C in light-protected glass containers

In vitro PG-2PQA release

Cumulative release of 2PQA from the PG-2PQA conjugate having 16% drug payload (■), and oxidized dextran-2PQA conjugate having 18% drug payload (•) at pH 7.4 at 37°C

→ Hydrolytic susceptibility of the Schiff's linkage

3rd International Electronic Conference on Medicinal Chemistry 1-30 November 2017

sponsors:

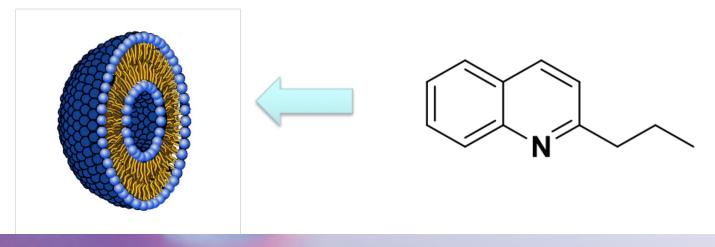
In vitro and in vivo antileishmanial activity

^a versus control mice,
P<0.005, OPG:
Oxidized polyglucose,
OD: Oxidized dextran,
OPG-5020: 50%
oxidized polyglucose
with 20% drug. OPG3020: 30% oxidized
polyglucose with 20%
drug, OD-2020: 20%
oxidized dextran with
20% drug

Compound /Formulation	<i>In vitr</i> o activity on <i>L. donovani</i> IC ₅₀ (μg/mL ± SD)		Treatment regimen-iv	<i>In vivo</i> activity	
	Axenic amastigotes	Intramacrophage amastigotes	route for5 days (mg/kg)	No of mices	Reduction in parasite burden (%)
OPG-5020-2PQA	> 100	> 100	10	8	4.1
OPG-3020-2PQA	> 100	> 100	10	8	0
OD-2020-2PQA	> 100	12.52 ±0.4	10	8	4.7
30% OPG	> 100	> 100	10	8	2.2
20% OD	> 100	> 100	10	8	0.6
2PQA	20.62 ± 1.73	12.53 ± 0.62 (50 µM)	10	8	60.5 ^a
2PQA.2HCI	0.78±0.09	1.24 ± 0.24 (5 µM)	10	8	48.8 ^a
	2.54 ± 0.70	1.51±0.22	1	12	88.9ª
AmBisome®			0.25	12	27.1
Control (vehicle)	-	> 100 µg/mL	0.2 mL	8	0

 \rightarrow Water-soluble conjugates: a not successul strategy because drug release

 \rightarrow Infratherapeutic concentrations



Design of a 2-*n*-PQ liposomal formulation for intravenous route \rightarrow visceral leishmaniasis

2-*n*-PQ drawback → Lipophilic nature making it difficult to prepare an intravenous formulation

Aim \rightarrow Developing a formulation for intravenous administration as a nanosystem concentrating 2-*n*-PQ to the site where parasites are located, mainly in the liver

→ Encapsulation of 2-*n*-PQ in liposomes

Optimization studies of 2-n-PQ liposomal formulation

	S. No	Egg PC (%)	Chol (%)	2-PQ (%)	Size (nm)	EE (%)
	1	100			161 ± 2	
	2	90	10		172 ± 2	
	3	80	20		175 ± 2	
	4	70	30		182 ± 2	
	5	95		5	174 ± 2	41
	6	90		10	160 ± 3	7
	7	80		20	148 ± 3	13
	8	85	10	5	148 ± 4	33
⇒	9	80	10	10	156 ± 3	53
	10	70	10	20	164 ± 4	28
	11	75	20	5	163 ± 4	47
	12	70	20	10	158 ± 3	34
	13	60	20	20	158 ± 3	30
	14	65	30	5	146 ± 4	61
	15	60	30	10	144 ± 2	5
	16	50	30	20	158 ± 4	5

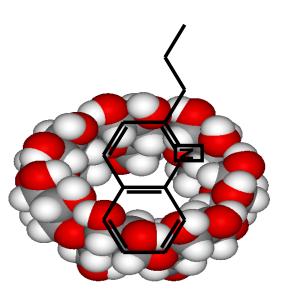
In vitro and in vivo evaluation of 2-n-PQ liposomal formulation and 2-n-PQ-AmB liposomal formulation on the Leishmania donovani / Balb/c mice model

Compound /	In vitro activity on L. donovani			In vivo activity		Deductions
Formulation	IC ₅₀ (µM ± SD) Axenic amastigotes	Intramacrophage amastigotes	Regimen	Number of mice	Route	Reduction of parasite burden (%)
iposomal 2PQ	3.10±0.25	5.84±0.31	3 mg/kg 2PQ x 5 days	8	iv	83.8ª
			1.5 mg/kg 2PQ x 5 days	8	iv	32.5 ^ª
			0.75 mg/kg 2PQ x 5 days	8	iv	5.2
iposomal 2PQ+AmE	3 6.08±0.85 Eq 2PQ	13.5±1.93 Eq 2PQ	0.75 mg 2PQ + 0.006 mg AmB/kg x 5	8	iv	86.5ª
			0.37 mg 2PQ + 0.003 mg AmB/kg x 5	8	iv	10.3
mBisome®	2.54±0.70	1.51±0.22	1 mg AmB/kg x 5 days	8	iv	88.7 ^ª
			0.25 mg AmB/kg x 5 days	8	iv	27.1
			0.006 mg AmB/kg x 5 days	8	iv	2.3
lank liposomes	Inactive	Inactive	Same suspension	8	iv	5.7
PQ	> 100	>100	/	/	/	/
ontrol (vehicle)	Inactive	Inactive	0.2 mL x 5 days	8	iv	0

 $^{\rm a}$ Significant versus control mice: $P{<}0.05$

\rightarrow Liposomal 2-*n*-PQ: active at a total dose of 15 mg/kg

→ No synergy *in vitro* between AmB and 2-*n*-PQ but slight synergy *in vivo*



Design of a 2-*n*-PQ formulation for intravenous route \rightarrow disseminated leishmaniasis

2-*n*-PQ drawback \rightarrow Lipophilic nature making it difficult to prepare an intravenous formulation

Aim \rightarrow Getting a hydroxypropyl- β -cyclodextrin (HPC) formulation \rightarrow 2-*n*-PQ-HPC formulation



 \rightarrow Soluble enough for intravenous administration

 \rightarrow Stable

 \rightarrow Suitable for the treatment of experimental leishmaniasis

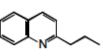
In vitro activity of the 2-n-PQ-HPC formulation on L. donovani

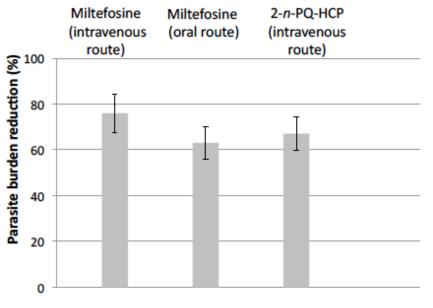
Compound/ formulation	<i>In vitro</i> activity o IC ₅₀ (μ Axenic amastigotes	n <i>L. donovani</i> M ±SD) ^[a] Intramacrophage amastigotes	Cytotoxicity Raw 264.7 MTC (µM ±SD) ^[b]	Selectivity Index (SI) SI= MTC/IC ₅₀ ^[c]
2- <i>n</i> -PQ	>100	>100	>100	/
2- <i>n</i> -PQ-HPC	6.22±0.82	20.01±0.52	>100	>5
HPC	>100	>100	>100	/
Miltefosine	1.22±0.50	0.85±0.21	50	>50

^[a] Inhibitory Concentration 50% at 72 h, mean \pm SD of three independent experiments

^[b] Maximum Tolerated Concentration (MTC) at 72 h ^[c] Selectivity Index (SI) calculated as the ratio of MTC/IC₅₀ on intramacrophage amastigotes

 \rightarrow The hydroxypropyl- β -cyclodextrin (HPC) formulation significantly enhanced the in vitro activity of 2-n-PQ





In vivo activity of the 2-n-PQ-HPC formulation on L. donovani

Treatment by intravenous route at 10 mg/kg/d x 10 on the *L. donovani* /Balb/c mice model 2-*n*-PO-HCP · 2-*n*-propylguipoline

Treatment at 10 mg/kg/day x 10

2-*n*-PQ-HCP : 2-*n*-propylquinoline hydroxypropyl-β-cyclodextrin formulation

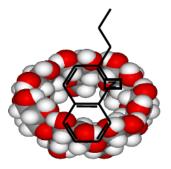
→ Activity similar to those of miltefosine

→ No hepatic, renal and blood toxicity
 → No activity with a treatment on 5 consecutive days

(Balaraman et al., BP, 2016)

3rd International Electronic Conference on Medicinal Chemistry 1-30 November 2017

sponsors: MDPI


Drug interactions and drug resistance of the 2-*n*-PQ-HPC formulation on *L. donovani*

→ 2-n-PQ-HPC exhibited similar activity on WT and drug-resistant parasites (Glu-R, AmB-R, Milt-R, Sita-R)

 \rightarrow Its *in vitro* interactions with antimonials, amphotericin B and miltefosine were found as additive both in axenic amastigotes and intramacrophage amastigotes

 \rightarrow 2-*n*-PQ-HPC was not able to generate drug resistance after *in vitro* drug pressure since the RI <4 (1.8)

RI = Resistance Index = $IC_{50 \text{ after drug pressure}} / IC_{50 \text{ before drug pressure}}$

Conclusion: from the plant to the formulations

From 2-*n*-PQ, a natural compound, easy to synthesize:

- →1 liposomal formulation for intravenous route targeting VL → Active at 3 mg eq 2-*n*-PQ /kg /day x 5 days
- → 1 hydroxypropyl-β-cyclodextrin (HPC) formulation for intravenous route targeting disseminated leishmaniasis
 - → Active at 10 mg eq 2-*n*-PQ /kg /day x 10 days
- \rightarrow No success with water-soluble polymers...

→ Determination of the 2-*n*-PQ amounts in the liver after intravenous administration of the liposomal formulation by using radiolabelled 2-*n*-PQ
 → Quantification of the drug targeting

→ PK profiles of 2-*n*-PQ after intravenous administration of liposomal 2-*n*-PQ and 2-*n*-PQ-HPC

→ Evaluation of the formulation efficacy on other leishmaniasis experimental models (*L. amazonensis*, …)

→ Nanoparticulate systems containing 2-*n*-PQ which are able to remain in the circulation, thereby allowing the drug to reach the parasites in disseminated leishmaniasis → intraveinous route

Acknowledgments

