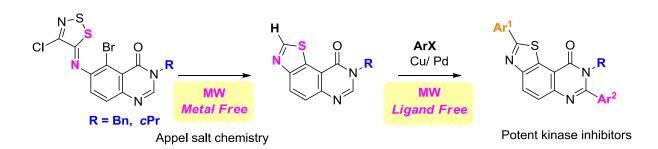


3rd International Electronic Conference on Medicinal Chemistry

1-30 November 2017 chaired by Dr. Jean Jacques Vanden Eynde


Late-stage C-H Arylation of Thiazolo[5,4-f]quinazolin-9(8H)-one Backbone: Synthesis of an Array of Potential Kinase Inhibitors

Florence Couly¹, Carole Dubouilh¹, Laurent Meijer²,

Corinne Fruit^{1,*} and Thierry Besson^{1,*}

- ¹ Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France
- ² Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France
- * Corresponding authors: corinne.fruit@univ-rouen.fr; thierry.besson@univ-rouen.fr

Graphical Abstract

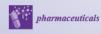
Abstract: Driven by the need of structural modification to establish structure—activity relationships, selective functionalization of thiazolo[5,4-f]quinazolin-9(8H)-one was developed through sequential activation of C-H bonds to furnish diarylated compounds. This strategy allows the regioselective C2 and C7 arylation by a judicious choice of coupling partners and bases, requiring no additional ligands or directing groups.

A more eco-friendly synthesis of thiazolo[5,4-f]quinazolin-9(8H)-ones was also described giving access to these aforementioned compounds in a facile manner.

Keywords: thiazolo[5,4-f] quinazolin-9(8H)-ones; microwave-assisted synthesis; C-H arylation; C-H activation; DYRK kinases inhibitors

Introduction

Our research group is mainly invested in the synthesis of C,N,S-containing bioactive molecules able to modulate the activity of deregulated kinases (CDK5, GSK-3, CLK1, CK1 and the dual-specificity kinase DYRK1A) involved to some extent in Alzheimer's disease (AD)[1]. Among them some thiazolo[5,4-f]quinazolin-9(8H)-ones (Figure 1) have been revealed of particular interest in the design of multitarget-directed ligands (MTDLs), a new strategy for the development of new tools against neurodegenerative diseases [2].


Figure 1.

Driven by the need of structural modification to establish structure—activity relationships, a selective functionalization of the thiazolo[5,4-f]quinazolin-9(8H)-one scaffold has been envisioned through sequential activation of C-H bonds to furnish diarylated compounds .

[1] Chaikuad, A.; Diharce, J.; Schröder, M.; Foucourt, A.; Leblond, B.; Casagrande, A.-S.; Désiré, L.; Bonnet, P.; Knapp, S.; Besson, T. *J. Med. Chem.* **2016**, *59*, 10315.

[2] Hédou, D.; Godeau, J.; Loaëc, N.; Meijer, L.; Fruit, C.; Besson, T. *Molecules* **2016**, *21*, 578; (b) Hédou, D.; Dubouilh-Benard, C.; Loaëc, N.; Meijer, L.; Fruit, C.; Besson, T. *Molecules* **2016**, *21*, 794.

Results and discussion

C-C bond formation through a C-H bond activation emerged as a powerful tool for the late-stage diversification of these valuable scaffolds.

Ar¹

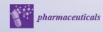
$$R = Bn \text{ or } cPr$$

1) LiO^fBu, Cul
2) Pd(OAc)₂, Ar¹X
$$X = I, R = Ar^1$$

$$X = Br, R = H$$

1) LiO^fBu, Cul
2) Pd(OAc)₂, Ar¹X
$$X = I, R = Ar^1$$

$$X = Br, R = H$$


1) DBU, Cul
2) Pd(OAc)₂, Ar¹X
$$X = I, R = Ar^1$$

$$X = Br, R = H$$

OMicrowave irradiation
- Sequential C-H activation

Differently substituted N^8 -substituted-2,7-diaryl-thiazoloquinazolin-9(8H)-ones were envisioned via regioselective C-H bond activation of thiazolo[5,4-f]quinazolin-9(8H)-one backbone in the hope to furnish the corresponding C2 and C7-arylated expected scaffold.

Results and discussion: Synthesis of N^8 -benzyl-thiazolo[5,4-f]quinazolin-9(8H)-one **6a** and N^8 cyclopropyl-thiazolo[5,4-f]quinazolin-9(8H)-one 6b starting from 5-nitro anthranilic acid

The synthesis of thiazolo[5,4-f]quinazolin-9(8H)-one-2-carbonitriles **5a** and **5b** can be performed in 5 steps starting from commercially available 5-nitro-anthranilic acid. The key steps are the reaction of the aniline derivative 3 with 4,5-dichloro-1,2,3-dithiazolium chloride (Appel's salt) following by the cyclisation of the intermediate imine 4. Access to compounds 6a-b was finally performed by heating the corresponding precursor **5a-b** in HBr. Nevertheless previous studies on C-H arylation of compound **5a**, showing that treatment of this compound with 2 equivalents of tBuOLi and 50 mol% of CuI for 10 min afforded small quantities of product 6a, allowed us to modify the synthetic route.

Results and discussion: Effect of the additives on the synthesis of thiazolo[5,4-f]quinazolin-9(8H)-one-2-carbonitrile **5a** from **4a**

We reasoned that compound **6a** could be obtained from intermediate **4a** in a one-pot cyclisation-decyanation process in the presence of *t*BuOLi, instead of the most toxic pyridine and an excess of CuI. No decyanation reaction was observed under these conditions but we were pleased to find that compound **5a** was isolated in 70% yield (Table, entry 1). Increasing the amount of the base gave 9% of **5a** besides traces of decyanated product **6a** but led mainly to the degradation of compound **4a** (entry 5). Longer reaction time or decreasing amount of *t*BuOLi did not affect the cyclisation step (entries 6-8). More surprisingly, compound **5a** was obtained without *t*BuOLi but in lower yield even with longer reaction time (entries 9 and 10).

entry	Cul (n equiv)	Base (n equiv)	5a (%) ^a	
1	1.5	tBuOLi (2)	70	
2 ^b	1.5	tBuOLi (2)	45	
3	-	tBuOLi (2)	72	
4	1.5	1.5		
5	-	tBuOLi (3)	9	
6 ^b	-	tBuOLi (2)	73	
7	-	tBuOLi (1)	71	
8	-	tBuOLi (0.5)	61	
9	-	-	15	
10 °	-	-	30	
11	-	DBU (2)	51	

^a Yield of isolated compound. ^b Reaction time is 1 h. ^c Reaction time is 5 h.

Results and discussion: Metal-free synthesis of thiazolo[5,4-f]quinazolin-9(8H)-one-2-carbonitriles **5a-b** from **4a-b**

We speculated that the rapid microwave decomposition of DMF leading to generated *in situ* dimethylamine might render compound **4a** more likely to cyclize. In fact, the results observed in entries 8 and 9 are consistent with the recent reported studies that emphasis highest decomposition rate of DMF in the presence of a base such as tert-Butylate. With regard to the effect of additives on the decomposition of DMF, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and ammonium hydroxide solution were tested.

entry	Cul (n equiv)	Base (n equiv)	5a (%)ª
12	-	NH ₄ OH (2)	59
13	-	NHMe ₂ (2)	67
14	-	NHMe ₂ (1)	76
15 ^d	-	NHMe ₂ (1)	64
16 ^e	-	NHMe ₂ (1)	80
17 ^f	-	NHMe ₂ (1)	78

 $^{^{\}rm d}$ Reaction time is 5 min. $^{\rm e}$ Reaction time is 15 min. $^{\rm f}$ Reaction time is 30 min.

We were delighted to find that when compound **4a** was treated with an aqueous solution of dimethylamine (entries 13-17) the tricyclic core **5a** was obtained in up to 80% yield (entry 16). It could be noticed that DMF-free reaction led to a mixture of starting material **4a**, compound **5a** and degradation. Applying the optimized condition reaction to compound **4b** gave the tricyclic product **5b** in 79% yield (Scheme).

Results and discussion: Arylation of N^8 -Benzylated-Thiazolo[5,4-f]quinazolin-9(8H)-one **6a** With Aryl Halides^a

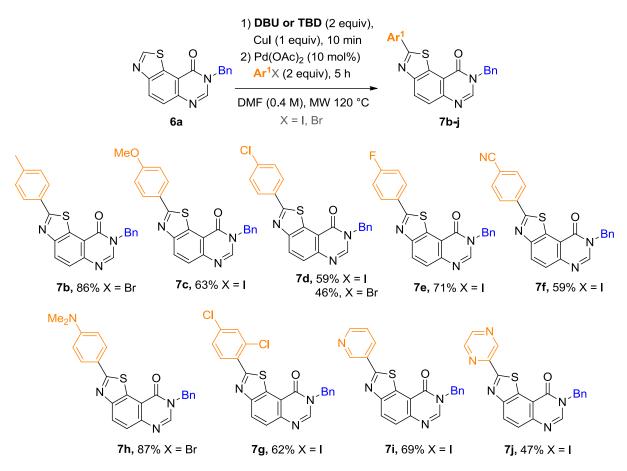
We opted to use the N^8 -benzylated-thiazolo-quinazolin-9(8H)-one **6a** as the substrate. Under previous conditions, a mixture of C2-mono- and C2/C7-bis-phenylated products **7a** and **8a**, was obtained among starting material **6a**. However, when the loading of aryl iodide was increased and reaction time was prolonged to 5 h, diphenylated product **8a** was interestingly obtained in up to 68% yield (entry 6).

o na turni	time (h)	PhX	7a	8a	
entry	time (h)	(x equiv)	(yield %) ^b	(yield %) ^b	
1	0,5	PhI (2)	27	45 (23) ^c	
2 ^d	1	PhI (2)	30	0 (64) ^c	
3	4	PhI (2)	28	53 (0) ^c	
4	4	PhI (3)	32	59 (0) ^c	
5 e	4	PhI (3)	31	62 (0) ^c	
6	5	PhI (4)	27	68 (0) ^c	
7	3	PhBr (2)	93	0 (0) ^c	
8	3	PhCl (2)	0	0 (100) ^c	

 $^{^{\}sigma}$ Conditions: Reactions were performed in a sealed tube at 0.4 M with premixing CuI (50 mol%), LiOtBu (2 equiv) and **6a** (1 equiv) in a microwave reactor, before adding PhX (x equiv), Pd(OAc)₂ (5 mol%). b Reported yields are isolated yields. c yields of recovered starting material **6a**. d The reaction was performed without CuI. e the reaction was performed with 1 equiv of CuI.



With acceptable conditions established, we explored the scope of the bis-arylation reaction (Table) with various aryl iodides. When aryl iodide was introduced, the resulting 2-aryl-thiazolo[5,4-f]quinazolin-9(8H)-ones were reactive enough to perform a second arylation, yielding significant amounts of 2,7-homodiarylated products **8b-f**. This double C2/C7 arylation protocol yielded targeted compounds in moderate yields. Whatever the applied reaction conditions, the bis-arylation was not complete.

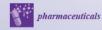

entry	Ar-	compd	yield (%) ^b
1	4-Me-Ph-	8b	63 (30) ^c
2	4-MeO-Ph-	8c	67 (29) ^c
3	4-Cl-Ph-	8d	56 (41) ^c
4	4-F-Ph-	8e	26 (58) ^c
5	4-CN-Ph-	8f	55 (38) ^c
6	2,4-Cl-Ph-	8g	0 (88) ^c

 $^{^{}a}$ Conditions: Reactions were performed in a sealed tube at 0.4 M with premixing **6a** (1 equiv), LiO^tBu (2 equiv), and CuI (50 mol %) in a microwave reactor, before adding ArI (3 equiv), Pd(OAc)₂ (5 mol %). b Reported yields are isolated yields. c isolated yields of corresponding compound **6b-g**.

Results and discussion : Scope of the C2 Arylation of N^8 -Benzylated-Thiazolo[5,4-f]quinazolin-9(8H)one 1 with Aryl Halides^a

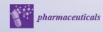
^a premixing **6a** (1 equiv), DBU (2 equiv) and Cul (1 equiv), before adding Arl or ArBr (2 equiv), Pd(OAc)₂ (10 mol%) for 5 h.

Results and discussion : Regioselective C7 Arylation of 2-Aryl- N^3 -Benzylated-Thiazolo[5,4-f] quinazolin-9(8H)-ones 2a-f a



^a premixing **2** (1 equiv), LiOtBu (2 equiv) and CuI (50 mol %), before adding ArI (2 equiv), Pd(OAc)₂ (5 mol %) for 5 h.

Results and discussion: Scope of the C2 Arylation of N⁸-cyclopropyl-Thiazolo[5,4-f]quinazolin-9(8H)one 1 with Aryl Halides^a


^a Premixing **6b** (1 equiv), DBU (2 equiv) and CuI (1 equiv) at 120 °C for 10 min, before adding Pd(OAc)₂ (10 mol%) and ArI or ArBr (2 equiv) for 5 h. b 1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) was used as base instead of DBU.

Results and discussion : Kinase inhibitory activity of the thiazolo[5,4-f]quinazoline described :

All compounds were first tested at a final concentration of 10 µM. Compounds showing less than 50% inhibition were considered as inactive (IC₅₀ >10 μ M). Compounds displaying more than 50% inhibition at 10 μ M were next tested over a wide range of concentrations (usually 0.01 to 10 μ M), and IC₅₀ values were determined from the dose-response curves (Sigma-Plot). Harmine is a b-carboline alkaloid known to be a potent inhibitor of DYRK1A. It was also tested as positive control and its IC50 values were compared to those obtained for the compounds under study.

Results and discussion

Kinase inhibitory activity^{a,b,c} of the thiazolo[5,4-f]quinazoline described : Only two monoarylated compounds show high inhibition values for kinase involved in Alzheimer's disease.

	CLK1	CLK2	CLK3	CLK4	DYRK1A	DYRK1B	DYRK2	DYRK3	GSK3
10i	0.018	0.083	5.3	0.035	0.011	0.120	0.013	0.023	0.068
N NBn	2	4	>10	0.630	0.012	0.110	0.001	<0.001	3.7

^a IC₅₀ values are reported in μM. The most significant results are presented in bold; ^b Kinases activities were assayed in triplicate. Typically, the standard deviation of single data points was below 10%.

Harmine is a b-carboline alkaloid known to be a potent inhibitor of DYRK1A ($IC_{50} = 0,029$ mM in the conditions tested).

Conclusions

According to the need of structural modification to establish structure—activity relationships, we described efficient methods for the late-stage functionalization of N^8 -benzyl and N^8 -cyclopropyl thiazolo[5,4-f]quinazolin-9(8H)-ones. Both procedures tolerate a large panel of substituents on the aryl halide. A metal-free synthesis of the precursors was also described. Two mono-arylated compounds show high inhibition values for kinase involved in Alzheimer's disease.

Acknowledgments

Financial support from the MESR (French Ministère de l'Enseignement Supérieur & de la Recherche) is gratefully acknowledged for the doctoral fellowships to F.C.. We thank the LABEX SynOrg (ANR-11-LABX-0029) for financial support. We also acknowledge Anton-Paar (Austria) and Milestone S.r.l. (Italy) for provision of microwave reactors (Start STM) and for technical support. This research was partly supported by grants from the "Fonds Unique Interministériel" (FUI) TRIAD (LM) projects, the "Fondation Jérôme Lejeune" (LM), and an FP7-KBBE-2012 grant (BlueGenics) to LM.

