



# Novel Racemic and Enantiopure Amino-Fluorene-Methanol Compounds with Antimalarial Activities

# <u>Jérémy SCHNEIDER<sup>1</sup></u>\*, Alexandra DASSONVILLE-KLIMPT<sup>1</sup>, Catherine DEMAILLY-MULLIE<sup>1</sup>, and Pascal SONNET<sup>1</sup>

1. LG2A, CNRS UMR 7378, UFR de pharmacie, Université de Picardie Jules Verne, 1 rue des Louvels, 80037 Amiens Cedex, France. E-mail: jeremy.schneider@etud.u-picardie.fr

## INTRODUCTION

Malaria, the world's most deadly parasitic disease, is caused by *Plasmodium* species which are transmitted by female *Anopheles* mosquitoes. In 2015, 214 million cases of malaria and 438 000 deaths due to the parasite<sup>a</sup>, in particular by *P. falciparum*, were listed. In drugs resistance areas, several antimalarial drug, such as mefloquine (MQ) or lumefantrine (LM), are currently used in combination with artemisinin derivatives (ACTs). These ACTs are recommended by WHO since 2001<sup>a,b</sup>. However, the emergence of multi-drug-resistant parasites, including artemisinin, is a real problem of public health. We have previously developed an asymmetric synthesis to prepare enantiopur 4-aminoquinoline-methanols (AQMs) as MQ analogs. They were active on nanomolar range against 3D7 (chloroquine-sensitive) and W2 (chloroquine-resistant) *P. falciparum* strains (Table 1)<sup>c</sup>. Interestingly, *(S)*-enantiomers displayed an activity increased by 2 to 15-fold as compared to their (*R*)-counterparts<sup>d,e</sup>. In order to obtain new antimalarial agents with novel aromatic core, we describe here, an enantioselective synthesis of 4-aminofluorene-methanols (AFMs) as LM analogs. We will establish novel structure-activity relationships (SAR) and we will compare the activities with the AQMs **1** previously obtained.



#### Table 1: AQM IC<sub>50</sub> (nM) <sup>c</sup>

| , |  |
|---|--|
|   |  |

Product

 $(S)_{1} = (P)_{1}$ 



|                    | Product           | Ινίζ         | LŲ          | (n=3)       | (n=3)      | (s)-16<br>(n=5) | (n=5)           |
|--------------------|-------------------|--------------|-------------|-------------|------------|-----------------|-----------------|
| IC <sub>50</sub> a | P. falciparum 3D7 | 52,2 ± 16,29 | 18,9 ± 0,08 | 8,33 ±0,44  | 74,7 ± 4,7 | 33,0 ± 1,6      | $254 \pm 27$    |
| (nM)               | P. falciparum W2  | 10,4 ± 2,42  | 572 ± 0,09  | 6,98 ± 0,62 | 38,2 ± 3,6 | ND <sup>b</sup> | ND <sup>b</sup> |

<sup>a</sup> Isotope micromethod that measures inhibition of parasite uptake of tritiated hypoxanthine in the presence of antimalarial agents <sup>b</sup>. Not determined

### **RACEMIC AND ENANTIOSELECTIVE AFMs SYNTHESIS**



Two synthetic routes were developed to access to the racemic and enantiopure **AFMs**. These routes have a common intermediate **6** which was prepared from available commercially fluorene **5** through a radical Wohl-Ziegler reaction (Step A). The next step was a Friedel-Craft chloroacylation to give compounds **7** and **9** (Step B).

In first time, to have a quick access to AFMs and study their antimalarial activities, we have developed a racemic route. For this, the chlorhydrine 8 was synthesized with 90% yield (Step C). The racemic AFMs 2a-c were obtained in the presence of a primary amine by microwave assistance. Then, an oxidation or a Knoevenagel condensation gave respectively the racemic AFMs 3a and 4a.

To obtain the enantiopure AFMs, we chose to develop an asymmetric epoxidation. The vinyl **10** was prepared *via* **9** reduction followed by dehydratation. Then, an asymmetric Sharpless dihydroxylation was performed to give the diols (*S*)-**11** and (*R*)-**11** with 68% and 69% of yields (ee. >97%) (Step E). The epoxides **12** were obtained after a one-pot synthesis (in three reaction steps) in good yields and enantiomeric purities (Step F). A nucleophilic addition, by microwave assistance in the presence of a primary amine gave the enantiopure AFMs **2a-d** (Step G, Table 2). Currently, we obtained many enantiopure (ee.>98%) **AFMs 2a-d** with good yields (Table 2).

## RESULTS

#### **Relative antimalarial activity indexes**

For **3D7** :  $IC_{50}$  compound (nM) /  $IC_{50}$  MQ (nM) For **W2** :  $IC_{50}$  compound (nM) /  $IC_{50}$  CQ (nM)



The *in vitro* antimalarial activity of **AFMs 2** were evaluated against 3D7 and W2 *P. falciparum* strains with a SYBR Green I fluorescence-based method. The hypoxanthine method was previously used to assess the **AQMs 1** antimalarial activity. To be able to compare the **AQMs 1** and **AFMs 2**, as these two methods were different, relative antimalarial activity indexes were calculated and compared respectively to MQ (for 3D7) and to CQ (for W2).

The racemic AFMs **2b-d** were active on the nanomolar range with a slightly higher efficiency against W2 strains (Table 3). In comparison, we can see that **2b**, **c** showed similar activities with the **(S)-AQMs** (the most active MQ analogs). These first results support us for the synthesis of new enantiopure LM analogs to study the influence of the stereochemistry.

#### <u>**Table 3:**</u> IC<sub>50</sub> (nM) **AFMs**

Product

CQ

**2b** 

**2d** 

**2**c



MQ

## CONCLUSION

In this work, two routes to access to racemic and enantiopure AFMs **2**, **3** and **4** were investigated. At this time, we obtained 5 racemic and 10 enantiopure **AFMs**, in 5 or 7 steps, with 14% to 37% of global yields. Preliminary antimalarial results for **AFM 2b**, **AFM 2c** and **AFM 2d** showed high activities on the nanomolar range that confirm the interest of the flurorene core in the research of new antimalarial drugs. We must now verify the importance of an asymmetric center by biological evaluation of enantiopure **AFMs** and continue the fluorene core pharmacomodulations.

(a) World Malaria Report, WHO, 2015, 2 - 81. - (b) 1-Guidelines for the treatment of malaria, 3RD edition, WHO, 2015, 214 - 219. - (c) Petersen I. et al., FEBS LETTERS 585, 2011, 15, 515-562. - (d) Jonet A. et al., Tetrahedron: Asymmetry, 22, 2011, 138-148. - (e) Mullié C. et al., Malaria Journal, 2012, 11:65.



3rd International Electronic Conference on Medicinal Chemistry 1-30 November 2017

