

3rd International Electronic Conference on Medicinal Chemistry

1-30 November 2017 chaired by Dr. Jean Jacques Vanden Eynde

Novel Gold Complexes with Nitrogen Acyclic Carbenes and their Applications as Anticancer Agents

Mélanie Aliaga Lavrijsen *, M. Dolores Villacampa , M. Concepción Gimeno

Departamento Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH). Universidad de Zaragoza-CSIC, 50009, Zaragoza, España

* maliaga@unizar.es

Novel Gold Complexes with Nitrogen Acyclic Carbenes and their **Applications as Anticancer Agents**

Abstract:

Gold drugs are well known and have been widely studied for their potential chemotherapeutic properties in anticancer treatments, although they have some limitations.^{1,2}

Gold N-heterocyclic carbenes, especially NHC-Au(I) display high cytotoxicity in vitro (low micromolar to nanomolar) against a variety of human cancer cell lines with different degrees of selectivity. In the search for new alternatives, not only N-heterocyclic but N-acyclic carbenes must be explored. ^{2,3,4}

N-acyclic carbenes are easily accessible via the reaction between isocyanide gold compounds and different amines. The reaction between one of those derivatives with different thiol groups, in presence of K_2CO_3 as an deprotonating agent, has led to a family of gold(I) NAC thioderivatives with high cytotoxicity.

Biological activity was measured by MTT assay for different human cancer cell lines: A-549 (lung cancer), MiaPaca2 (pancreatic cancer) for the different synthetized compounds, calculating their IC_{50} . The IC_{50} values found were in many cases less than the value six, being these results very promising.

Keywords: gold; N-acyclic carbenes; isocyanide; cytotoxic activity

Introduction

Organogold complexes known for over 100 years

Introduction

- First gold acyclic carbene 1971 (Bonati and Minghetti, Synth. Inorg. Met.-Org. Chem. 1971, 1, 299) → Addition of CH₃OH to CI-Au-CNR
- 1973 Bonati and Minghetti (J. Organomet. Chem. 1973, 59, 403) → Addition of NH₂R to Cl-**Au-CNR**
- **Acyclic Aminocarbene Metal Complexes:**
 - Large σ–donor capacity
 - Wide angle N-C-N (adjustable)
 - Conformational flexibility
 - Wide range of nitrogen substituents

Synthesis and characterization of the new gold(I) NAC

Synthesis and characterization of the new gold(I) NAC

Compound 4

	Å,°
Au1Au1	3.438(1)
Au1-C1	1.998(9)
Au1-Cl1	2.283(2)
N1-C1	1.328(12)
N2-C1	1.331(12)
C1-Au-Cl1	175.6(2)
N2-C1-N1	117.3(8)

Synthesis and characterization of the thioderivatives

Results and discussion Synthesis and characterization of the new gold (I) NAC NMR - Compound 9 CH₂

Synthesis and characterization of the new gold (I) NAC Compound 9

	Å, º
Au1-C1	1.999(15)
Au1-S1	2.305(4)
N1-C1	1.343(16)
N2-C1	1.358(16)
C1-Au-S1	176.2(4)
N2-C1-N1	115.0(13)

MTT assay

MTT assay

Compound	IC ₅₀	error
1	18.92	2.93
2	0.49	0.19
3	5.75	1.99
4	8.63	2.88
5	1.59	0.39
7	5.64	1.02
10	6.04	3.50
6	0.23	0.07
8	5.14	0.58
9	4.34	0.60
11	2.52	0.89

Celular line: A-549

The IC_{50} values found were in many cases less than the value six, being these results very promising.

MTT assay

Compound	IC ₅₀	error
1	9.94	2.07
2	3.45	0.56
3	10.74	2.57
4	3.12	0.76
5	1.75	0.15
7	3.30	0.26
10	2.03	0.53
6	0.38	0.10
8	2.03	0.53
9	1.60	0.17
11	1.49	0.24

Celular line: MiaPaca2

The IC_{50} values found were in many cases below $6\mu M$, Showing these compounds a high cytotoxicity in both celular lines.

Stability

- 20mM solutions in DMSO were prepared
- Solutions 10⁻⁴M in PBS (buffer solution)
- Samples incubated at 37°C, measured by UV over 24h

All the compounds were stable under biological conditions

Conclusions

New gold(I) N-acyclic carbenes were synthesized.

Thioderivatives were coordinated to gold(I) NAC.

New complexes were tested through MTT assay, cell lines: A-549 (lung cancer), MiaPaca2 (pancreatic cancer). The IC₅₀ values found very promising

Acknowledgments

Prof. M. Concepción Gimeno

Prof. Antonio Laguna

Dr M. Dolores Villacampa

Dr Olga Crespo

Dr Mamen Blanco

Dr Elena Cerrada

Dr Vanesa Fernández

Dr Lourdes Ortego

Alice Johnson

Anabel Izaga

Andrés Luengo

Daniel Salvador

Ministerio de Economía y Competitividad (MINECO/FEDER) CTQ2013-48635-C2-1-P Gobierno de Aragón (Grupo E77)

