

3rd International Electronic Conference on Medicinal Chemistry

1-30 November 2017 chaired by Dr. Jean Jacques Vanden Eynde

Identification of a Novel Potent and Selective Anti-*Trichomonas vaginalis* Agent among Libraries of Bisbenzimidazoles

Jean Jacques Vanden Eynde ^{1,*}, Annie Mayence ¹, Tien L. Huang ¹, and Nigel Yarlett ^{2,3}

 ¹ Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
 ² Department of Chemistry and Physical Sciences, Pace University, New York, NY, USA
 ³ Haskins Laboratories, Pace University, New York, NY, USA

* Corresponding author: jean-jacques.vandeneynde@ex.umons.ac.be

Identification of a Novel Potent and Selective Anti-*Trichomonas vaginalis* Agent among Libraries of Bisbenzimidazoles

Graphical Abstract

MIC after 48 h under aerobic conditions

T. vaginalis isolate C1: $9 \pm 4 \mu M vs$ $18 \pm 5 \mu M$ for metronidazole *T. vaginalis* isolate 085: $26 \pm 7 \mu M vs$ $145 \pm 12 \mu M$ for metronidazole

Ability to cure a mouse model infection using

T. vaginalis isolate 286 at 10 mg kg⁻¹ day⁻¹ for 4 days: 4/5 vs 5/5 for metronidazole *T. vaginalis* isolate 085 at 10 mg kg⁻¹ day⁻¹ for 4 days: 4/5 vs 0/5 for metronidazole

Abstract:

Small libraries of bisbenzimidazoles structurally related to pentamidine have been synthesized and evaluated against different species of parasites.

2,2'-[1,3-Propanediylbis(oxy-1,3-phenylene)]bis-1*H*-benzimidazole emerged as a potent and selective anti-*Trichomonas vaginalis* agent from *in vitro* and *in vivo* studies. In particular, *in vitro* under aerobic conditions the compound was more active than metronidazole against both metronidazole-susceptible (C1) and –refractory (085) isolates of *Trichomonas vaginalis*. *In vivo*, it cured a subcutaneous mouse model infection using both kinds of isolates.

Keywords: bisbenzimidazole; metronidazole; *Trichomonas vaginalis*

Introduction

Metronidazole (1) is a nitroimidazole that is clinically used for the treatment of bacterial and parasitic infections [1]. It is effective against the anaerobic bacteria *Bacteroides fragilis* (gram negative), *Helicobacter pylori* (gram negative), and *Clostridium difficile* (gram positive) as well as against *Giardia intestinalis, Entamoeba histolytica*, or *Trichomonas vaginalis*.

The drug is generally well tolerated but emergence of refractory strains have been reported, especially in the case of trichomoniasis [2], a sexually transmitted disease (STD) affecting hundreds of millions of people worldwide.

[1] Sobel, R.; Sobel, J.D. Expert Opin. Pharmacother. 2015, 16, 1109-1115.

[2] Kirkcaldy, R.D.; Augostini, P.; Asbel, L.E.; Bernstein, K.T.; Kerani, R.P.; Mettenbrink, C.J.; Pathela, P.; Schwebke, J.R.; Secor, W.E.; Workowski, K.A.; Davis, D.; Braxton, J.; Weinstock, H.S. *Emerg. Infect. Dis.* **2012**, *18*, 939-943.

As part of our research on analogs of pentamidine (2), another drug in clinical use, we focused our attention on derivatives in which the amidine functions are included into a ring and designed small libraries of bisbenzimidazoles of structures A - D.

Hereafter we briefly report on the synthesis and biological evaluation of those compounds.

SDONSORS.

pharmaceuticals

on M 1-30

3rd International Electronic Conferenc on Medicinal Chemistry 1-30 November 2017

Results and discussion

1. Synthesis

The targeted compounds were prepared by a two-step sequence involving (i) an α,ω –dibromo compound generating the internal linker and an hydroxybenzaldehyde; (ii) activation of the so-obtained dialdehydes with sodium bisulfite and further reaction with a 1,2-phenylenediamine. Advantageously, both steps were optimized [3,4] and could be performed within minutes under microwave irradiation (Initiator[®] Biotage).

[3] Mayence, A.; Pietka, A.; Collins, M.S.; Cushion, M.T.; Tekwani, B.L.; Huang, T.L.; Vanden Eynde, J.J. Bioorg. Med. Chem. Lett. 2008, 18, 2658-2661.

[4] Cappoen, D.; Forge, D.; Vercammen, F.; Mathys, V.; Kiass, M.; Roupie, V.; Anthonissen, R.; Verschaeve, L.; Vanden Eynde, J.J.; Huygen, K. *Eur. J. Med. Chem.* **2013**, *63*, 731-738.

2. Biological evaluation – *In vitro* study

The bisbenzimidazoles of structures A – D were evaluated [5,6] for their inhibitory activity toward:

- Pneumocystis cariniii
- Trypanosoma brucei rhodesiense
- Trypanosoma cruzi
- Leishmania donovani
- Plasmodium falciparum K1
- Giardia intestinalis
- Entemoeba hystolytica Hk-9
- Trichomonas vaginalis isolate 286
- Trichomonas vaginalis isolate 085.

Interestingly, 2,2'-[1,3-propanediylbis(oxy-1,3-phenylene)]bis-1H-benzimidazole (**3**) is more active than the control drugs only in the presence of the metronidazole-susceptible and metronidazole-refractory *T. vaginalis* isolates under aerobic conditions.

[5] Mayence, A.; Vanden Eynde, J.J.; Kaiser, M.; Brun, R.; Yarlett, N.; Huang, T.L. Bioorg. Med. Chem. 2011, 19, 7493-7500.
[6] Korosh, T.; Bujans, E.; Morada, M.; Karaaglioglu, C.; Vanden Eynde, J.J.; Mayence, A.; Huang, T.L.; Yarlett, N. Chem. Biol. Drug Design 2017, 90, 489-495.

Leishmania donovani IC₅₀ = 3.91 uM

 IC_{50} miltefosine = 0.45 uM

sponsors:

MDP

Plasmodium falciparum K1

pharmaceuticals

$$IC_{50} = 8.01 \text{ uM}$$

$$IC_{50} \text{ melarsoprol} = 0.01 \text{ uM}$$

$$IC_{50} \text{ cm} \text{ mathematical} = 0.18 \text{ uM}$$

$$IC_{50} \text{ cm} \text{ mathematical} = 0.18 \text{ uM}$$

$$IC_{50} \text{ metronidazole} = 0.18 \text{ uM}$$

$$IC_{50} = 78.26 \text{ uM}$$

$$IC_{50} \text{ metronidazole} = 5.82 \text{ uM}$$

$$IC_{50} \text{ metronidazole} = 5.82 \text{ uM}$$

$$IC_{50} \text{ metronidazole} = 1.56 \text{ uM}$$

$$IC_{50} \text{ metronidazole} = 1.56 \text{ uM}$$

$$IC_{50} \text{ metronidazole} = 18 \text{ uM}$$

$$IC_{50} \text{ metronidazole} = 145 \text{ uM}$$

Trypanosoma brucei rhodesiense

3rd International Electronic Conference on Medicinal Chemistry 1-30 November 2017

2. Biological evaluation – *In vivo* study

The ability of benzimidazole **3** to cure an *in vivo* subcutaneous mouse model infection using *T. vaginalis* isolates 286 (metronidazole-susceptible) and 085 (metronidazole-refractory) was evaluated [6] at two doses: 10 mg/day/kg and 25 mg/kg/day. Five animals per group were dosed once per day for 4 days. On the sixth day the abscesses were removed and a portion checked microscopically for viable parasites at 24 and 48 hr. Compound **3** appeared to be as effective against both isolates and no sign of behavioral toxicity (loss of appetite, huddling in the corner, moving in circles, lethargy) was observed.

	T. Vaginalis 286		T. Vaginalis 085	
	10 mg/kg/day	25 mg/kg/day	10 mg/kg/day	25 mg/kg/day
	cured animals			
3	4/5	5/5	4/5	5/5
metronidazole	5/5	5/5	0/5	2/5

[6] Korosh, T.; Bujans, E.; Morada, M.; Karaaglioglu, C.; Vanden Eynde, J.J.; Mayence, A.; Huang, T.L.; Yarlett, N. Chem. Biol. Drug Design **2017**, 90, 489-495.

Conclusion

We found that, among small libraries of bisbenzimidazoles, 2,2'-[1,3propanediylbis(oxy-1,3-phenylene)]bis-1*H*-benzimidazole (**3**) emerged as an effective *in vitro* and *in vivo* anti-*Trichomonas vaginalis* agent. It is noteworthy that no sign of behavioral toxicity was observed during the *in vivo* study. In addition, contrary to some lower and higher homologues or structurally related analogues, **3** was characterized by an interesting selectivity because it was poorly active against other fungi/parasites including *Pneumocystis cariniii, Trypanosoma brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, Plasmodium falciparum* K1, *Giardia intestinalis,* and *Entemoeba hystolytica Hk-9*.

It is well known that benzimidazoles can target the β -tubulin of microtubules, resulting in disruption of mitotic spindle formation, cytoskeleton structures, and disruption of cilia and flagella biosynthesis. As with many genes in *T. vaginalis*, there are multiple β -tubulin gene copies and three of these have conserved Tyr167 and Phe200 residues required for benzimidazole binding. Let us also mention that in our hands, it was found that compound **3** was poorly susceptible to reduction by pyruvate:ferredoxin oxidoreductase.

