

3rd International Electronic Conference on Medicinal Chemistry

1-30 November 2017 chaired by Dr. Jean Jacques Vanden Eynde

Duel Anti-Inflammatory and Anti-Bacterial Effects of Phenylhydrazide and Phenylhydrazone Derivatives

Jalal Soubhye^{1,*}, Franck Meyer ², Pierre Van Antwerpen¹, Véronique Fontaine³, Michel Gelbcke² and François Dufrasne²

 ¹ Pharmacognosie, Bioanalyse et Médicaments, Faculty of pharmacy, Université Libre de Bruxelles (ULB), Boulevard du Triomphe, 1050 Bruxelles, Belgium;
² Microbiology, Bioorganic and Macromolecular Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, 1050 Bruxelles, Belgium.

* Corresponding author: jsoubhye@ulb.ac.be

Duel Anti-Inflammatory and Anti-Bacterial Effects of Phenylhydrazide and Phenylhydrazone Derivatives

Abstract:

The implementation of dynamic combinatorial libraries allowed to obtain several compounds derived from aromatic hydrazone with high activity on MPO. These inhibitors were found to be reversible and irreversible inhibitors of MPO at the nanomolar level. Docking experiments highlighted the interaction between the most active ligands and MPO, and further kinetic studies defined the mode of inhibition of these compounds. *In vivo* evaluation showed that one dose of irreversible inhibitors is able to suppress the activity of MPO after inducing inflammation.

Starting from benzoic acid hydrazide and paroxetine, a new series of compounds were designed and synthesized. These compounds have shown very high activity on MPO with IC_{50} of 12-900 nM. The mechanism of action experiments has demonstrated that these inhibitors inhibit MPO irreversibly.

Finally, hydrazide and hydrazine derivatives were tested as anti-bacterial agents. Surprisingly, all hydrazone derivatives showed high activity against Gram (-) bacteria and low activity on Gram (+). In contrast, hydrazide derivatives showed very high potency against Gram (+) but no effect was found on Gram (-). **Keywords:** Anti-Inflammatory; Anti-Bacterial; Myeloperoxidase; Phenylhydrazide; Phenylhydrazone

Phenylhydrazone

Inflammation

Inflammation is an ensemble of complex of biological defensive reactions carried out by the organism against harmful stimuli:

- Pathogens
- Irritants
- Damaged cells

Cardinal signs of inflammation are:

- > Pain
- Redness
- Immobility (loss in function),
- Swelling
- > Heat

Myeloperoxidase

- The heme enzyme myeloperoxidase is a lysosomal protein that plays an important role in innate immunity system. It is expressed in neutrophils and stored in their azurophilic granules.
- After phagocytosis of pathogens by the neutrophils, MPO produces a powerful oxidizing agent HOCl from H₂O₂and Cl⁻ which leads to the oxidation (degradation) of biomolecules of pathogens in the phagosome.

Klebanoff. J.Leukoc.Biol. 2005, 77

Myeloperoxidase and inflammatory syndromes

Alzheimer

- In some cases, MPO is released from neutrophils producing HOCI in the circulation which results in oxidative damages for the host tissues.
- These damages sometimes contribute to the development of injuries in several organs or systems such as kidney, central nervous system, articulations, lung and cardiovascular system

Rheumatoid arthritis

Lung injury

Atherosclerosis

Klebanoff. J.Leukoc.Biol. 2005, 77

Myeloperoxidase and atherosclerosis

The close relation between MPO activity and cardiovascular diseases prompted the study of the roles of MPO in atherosclerosis. It is found that MPO contributes to development of atherosclerosis by several effects:

- ➢ Oxidation of low-density lipoproteins (LDLs) → inflammatory response in monocytes → foam cells.
- ➤ oxidation of high-density lipoproteins (HDLs) → decrease in capacity in removing the cholesterol from atherosclerotic lesions.
- ▶ Dysfunction of endothelial \rightarrow vulnerable plaques.

Nicholls and Hazen. Arteriosclerosis, thrombosis, and vascular biology. 2005, 25

Design of Reversible and Irreversible Myeloperoxidase Inhibitors: from Dynamic Combinatorial Library

Combinatorial procedure

Step 2 : in a 96-well plate the group C was added to one of the compounds of group A and B.

Step 1 : Tube A contains the 24 aldehydes of group A and MPO, tube B contains the 14 aldehydes of group B and MPO, tube C contains the 6 hydrazines of group C and MPO, tube A-C contains the 23 aldehydes of group A and the 6 hydrazines of group C and MPO, tube B-C contains the 15 aldehydes of group B and the 6 hydrazines of group C and MPO.

Step 3 : one of the best aldehydes was added to one of the hydrazine compounds.

Design of Reversible and Irreversible Myeloperoxidase Inhibitors: from Dynamic Combinatorial Library

The best inhibitors

3rd International Electronic Conference on Medicinal Chemistry 1-30 November 2017

sponsors:

Design of Reversible and Irreversible Myeloperoxidase Inhibitors: from Dynamic Combinatorial Library

Docking experiments for the best inhibitors

Comparison of best-scored docking poses of the hydrazones derived from hydralazine. (A) Compound **A13C1** : stacking pose on the heme (phenyl of the aldehyde; for other derivatives this is the aromatic ring of hydralazine). (B) compound **A1C1**, (C) compound **A6C1**, (D) compound **B13C1**.

Design of Reversible and Irreversible Myeloperoxidase Inhibitors: from Dynamic Combinatorial Library

In vivo test

Determination of MPO concentration collected in the peritoneal liquid of rats (top). Measurement of MPO activity collected in peritoneal liquid after 48 h of drug administration (bottom). (*) MPO concentration in ref group is significantly lower than the other groups, and the activity of MPO in the carrageenan group is significantly higher than in the other groups (P < 0.001, Shapiro–Wilk test).

sponsors:

Ligand-Based Design of Irreversible Myeloperoxidase Inhibitors Starting from Paroxetine and p-Aminobenzoic Acid Hydrazide

Drug design

Ligand-Based Design of Irreversible Myeloperoxidase Inhibitors Starting from Paroxetine and p-Aminobenzoic Acid Hydrazide

Ligand-Based Design of Irreversible Myeloperoxidase Inhibitors Starting from Paroxetine and p-Aminobenzoic Acid Hydrazide

Results

The high activity of **HYD4** can be explained by the high interactions between the inhibitor and the residues of the active site of MPO.

Anti-Bacterial Effects of The Hydrazone and Hydrazide Derivatives

In addition to the anti-mycobacteria, isoniazide, several hydrazide compounds showed anti-bacterial effect.

Our hydrazones and hydrazides were screened on G(+) and G(-) bacteria.

Arch. Pharm. Chem. Life Sci. 2008, 341, 734 – 739; Iran J Pharm Res. 2016; 15(Suppl): 29–35.

Anti-Bacterial Effects of The Hydrazone and Hydrazide Derivatives

Results

3rd International Electronic Conference on Medicinal Chemistry 1-30 November 2017

sponsors:

pharmaceuticals

Conclusions

- Sevral aryl hydrazones and aryl hydrazides were obtained by dynamic combinatorial chemistry and rational drug desgin as MPO inhibitors.
- Some of these inhibitors showed high potency against MPO at nanomolar range.
- The studies of mechanism of action has demonstrated that these inhibitors are irreversible.
- Screening of these aryl hydrazones and aryl hydrazide on E.coli and S.aureus showed that aryl hydrazones are active against G(-) bacteria while aryl hydrazides are active against G(+) bacteria.
- > HYD4 showed the best activity on both MPO and S.aureus but low activity on G(-).
- The mechanism by which these compounds work as anti-bacterial agents must be determined.

HYD4 *E.coli:* MIC= 500 μ g/mL *S.aureus*: MIC= 15 μ g/mL MPO: IC₅₀= 12 nM Irreversible inhibitor

Acknowledgments

Department of Pharmacognosy, Bioanalysis and Drugs. Department of Microbiology, Bioorganic and Macromolecular Chemistry.

