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Neonicotinoids are considered to be one of the most important and relevant classes of 

insecticides used nowadays, accounting for over 10% of insecticidal  market1,2. To date, there 

are eight insecticides commercialized with a neonicotinoid mode of action and others in 

development. 
 

The neonicotinoids mode of action is similar to the natural insecticide nicotine. They are 

active on the insect postsynaptic nicotinic acetylcholine receptors (nAChRs) and still of 

current interest, despite their resistance and bee toxicity3. 

  

The basic neonicotinoid skeleton is composed of an  amidine  or  a  guanidine part  

conjugated  to  an electron-withdrawing  group such as nitro  or cyano. Every  neonicotinoid  

poses  two  sites for  binding  to  the  nicotinic  acetylcholine  receptors:  (i)  a cationic  site  

and  (ii) a hydrogen acceptor  site.  
 

Several studies of computational chemistry and electrophysiology tried to model the 

neonicotinoid-receptor interactions. As outcomes, electrostatic interactions and possibly 

hydrogen bond formation were found to be important for the insecticidal activity4. 

BACKGROUND 

1. Ren L.; Lou Y.; Chen N.; Xia S.; Shao X.; Xu X.; Li Z. Synthetic Commun. 2014, 44, 858–867. 
2. Nauen R.; Denholm I.  Arch. Insect Biochem. 2005, 58, 200–215. 

3. Matsuda K.; Kanaoka S.; Akamatsu M.; Sattelle D. B. Mol. Pharmacol. 2009, 76, 1–10. 
4. Matsuda K.; Shimomura M.; Ihara M.; Akamatsu M.; Sattelle D.B. Biosci. Biotechnol.Biochem., 2005, 69, 1442-1452. 
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AIM 

A series of 30 neonicotinoid analogues tested against the cowpea 

aphids (Aphis craccivora) was modeled by molecular and 

quantum mechanics approaches. 

 

 

 

Multiple linear regression (MLR) and genetic algorithm (GA) 

methods were used to simulate the relationship between pLC50 

values and computed structural descriptors. 
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NEONICOTINOIDS CHEMICAL STRUCTURES5,6 

11* 
10** 9* 7** 8* 6* 

1* 2* 5* 3* 4* 

24* 18*** 19* 20* 21* 22** 23* 

13** 14*** 12** 17* 16* 15* 

25* 28* 29* 27* 26* 30*** 

*Training compounds included in the final MLR1 data set  

**Test compounds included in the final MLR1 data set  

***Compounds excluded from the final MLR1 model 
5. Tian Z.; Shao X.; Li Z.; Qian X.; Huang Q. Synthesis, J. Agric. Food Chem. 2007, 55, 2288-2292. 
6. Shao X.; Li Z.; Qian X.; Xu X. J. Agric. Food Chem. 2009, 57, 951–957. 
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METHODS 

• Definition of target property and molecular structures 
 
• The insecticidal activity (expressed as pLC50 values) of 30 neonicotinoid analogues 

bearing nitroconjugated double bond and five-membered heterocycles and 

nitromethylene neonicotinoids containing a tetrahydropyridine ring with exo-ring ether 

modifications was used as dependent variable. 

 

• The 30 neonicotinoid structures were pre-optimized using the conformer plugin of the 

MarvinSketch7 package (with MMFF94 as molecular mechanics force field) and further 

the lowest energy conformers were refined using the semiempirical PM7 Hamiltonian  of 

MOPAC8 2016 program . 

 

• Structural 0D, 1D, 2D and 3D molecular descriptors were calculated for the lowest energy 

structures using the DRAGON9 and InstanJChem10 software. 

7. MarvinSketch 15.2.16.0, ChemAxon Ltd. http://chemaxon.com 
8. MOPAC2016, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net(2016) 

9. Dragon Professional 5.5, 2007, Talete S.R.L., Milano, Italy 
10. Instant JChem (2012) version 5.10.0, Chemaxon, http://www.chemaxon.com 

http://chemaxon.com/
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METHODS 

• The MLR calculations were performed using the QSARINS11 v2.1 package.  

 

• The high number of computed descriptors (N=1624) compared to the number 

of compounds (N = 30) imposed a proper variable selection method such as 

Genetic Algorithm (GA)12.  

 

• The QSARINS program uses GAs to select the meaningful descriptors that 

influence the biologic activity of the compounds. The following parameters 

were employed: the RQK fitness function with leave-one-out cross-validation 

correlation coefficient, as constrained function to be optimized, a 

crossover/mutation trade-off parameter of T = 0.5 and a model population 

size of P = 50.  

11. Gramatica P.; Chirico N.; Papa E.; Cassani S.; Kovarich S. J.  Comput. Chem.  2013, 34, 2121–2132. 
12. Depczynski U.; Frost  V.J.; Molt K., Anal. Chim. Acta  2000, 420, 217-227. 
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• Model validation 
 

• The neonicotinoid derivatives were randomly divided as fallows: 
    - 18.5% of the total number of compounds (no. 7, 10, 12, 13, 22) as test set 
    - 81.5% as training set 
 

• The model’s predictability was tested using the external validation parameters13-15: 
    -  

    - the concordance correlation coefficient (CCC) 
    -     (with a lowest threshold value of 0.5 to be accepted) 
 

METHODS 

2

mr

• For internal validation results, several measures of robustness were employed16-18: 
    -Y-scrambling,  

    - adjusted correlation coefficient (    ) 
    - q2 (leave-one-out,    , and leave-more-out,     ) cross-validation coefficient. 
 

• The performance of the MLR models was tested by the Multi-Criteria Decision Making (MCDM) 
validation criteria (with values between 0 (the worst) and 1 (the best)). 

2

LOOq
2

LMOq

13. Chirico N.; Gramatica P. J. Chem. Inf. Model. 2011, 51, 2320-2335.  
14. Chirico N.; Gramatica P J. Chem. Inf. Model. 2012, 52, 2044−2058. 
15. Roy K.; Mitra I. Mini-Rev. Med. Chem. 2012, 12, 491−504. 

16. Eriksson L.; Johansson E.; Kettaneh-Wold N.; Wold S. Umetrics AB, Umea, 2001, pp. 92–97, pp. 489–491. 
17. Todeschini R.; Consonni V.; Maiocchi A. Chemometr.  Intell. Lab. 1999, 46, 13-29. 
18. Keller H.R.; Massart D.L.; Brans J.P. Chemom. Intell. Lab. Syst. 1991, 11, 175-189. 
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RESULTS AND DISCUSSIONS The statistical results for MLR model fitting and predictivity 

2

scrr

Model 
2

trainingr  
2

LOOq  
2

LMOq  
2

adjr  RMSEtr MAEtr CCCtr 
2

scrr  
2

scrq  SEE F 

MLR1 0.896 0.853 0.845 0.885 0.261 0.216 0.945 0.095 -0.220 0.281 81.61 

MLR2 0.887 0.851 0.841 0.876 0.271 0.220 0.940 0.095 -0.228 0.292 74.90 

MLR3 0.808 0.770 0.763 0.799 0.354 0.302 0.894 0.045 -0.157 0.372 84.35 

MLR4 0.824 0.786 0.779 0.815 0.340 0.294 0.904 0.049 -0.152 0.356 93.58 

 

Model 
2

1FQ  2

2FQ  2

3FQ  RMSEext MAEext CCCext 

MLR

1 

0.851 0.840 0.916 0.235 0.179 0.907 

MLR

2 

0.805 0.790 0.890 0.269 0.244 0.913 

MLR

3 

0.876 0.867 0.930 0.214 0.207 0.934 

MLR

4 

0.820 0.806 0.898 0.258 0.236 0.921 

 

Model 
2

mr  MCDM all Descriptors included in the model* 

MLR1 0.810 0.878 nR06,  E3m 

MLR2 0.697 0.865 nCrs,  C-003 

MLR3 0.817 0.846 Strongest basic pKa 

MLR4 0.656 0.840 nCrs 

 

Table 1. The fitting and cross-validation statistical results of the MLR models (training set)* 

Table 2. The MLR predictivity results (test set)* 

Table 3. The   predictivity parameters, ‘MCDM all’ score values and descriptors in the final MLR models* 

*                            -external validation parameters;  

   RMSEext-root-mean-square errors;  

   MAEext -mean absolute error;  

   CCCext-the concordance correlation coefficient 

2

1FQ ; 2

2FQ ;
2

3FQ  

• -  correlation coefficient;    - leave-one-out 

correlation coefficient;     - leave-more-out 

correlation coefficient;     -adjusted correlation 

coefficient; RMSEtr-root-mean-square errors; MAEtr-

mean absolute error; CCCtr-the concordance 

correlation coefficient; and  -Y-scrambling 

parameters; SEE-standard error of estimates; F-

Fischer test. 

* nR06 – number of 6-membered rings, E3m- 3rd 

component accessibility directional WHIM index / 

weighted by atomic masses, nCrs- number of ring 
secondary C(sp3), C-003 - CHR3 (atom-centred 

fragments), strongest basic pKa- the basic pKa 

value for the first strength index. 
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RESULTS AND DISCUSSIONS The reliability of the MLR model  

Figure 1. Plots of experimental versus predicted pLC50 values for the MLR1 model  - predicted 

by the model (A) and by the leave-one-out (B) cross-validation approach (yellow circles-

training compounds, blue circles-test compounds). 

A B C 

Figure 2. Williams plot predicted by the MLR1 

model (C) (yellow circles-training compounds, 

blue circles-test compounds). 



2
1
st

 I
n

te
rn

a
ti
o

n
a

l 
E
le

c
tr

o
n

ic
 C

o
n

fe
re

n
c

e
 o

n
 S

y
n

th
e

ti
c

 O
rg

a
n

ic
 C

h
e

m
is

tr
y

 (
N

o
v
e

m
b

e
r 

2
0
1
7
) 

E
C

S
O

C
-2

1
 

The model robustness and predictive power 

Figure 3. Y-scramble plots for the MLR1 model 

  nR06 E3m 

nR06 1   

E3m 0.247 1 

Table 4. Correlation matrix of the selected descriptors 

 included in the best MLR1 model 

The increases of E3m is beneficial for 

the insecticidal activity 

The presence of more 6-membered 

rings in the structure decreases the 

insecticide action 
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CONCLUSIONS 

Quantitative relationships between the molecular structure and cowpea aphids (Aphis 

craccivora) inhibitory activity of neonicotinoids analogues was verified by MLR approach. 

 

The semiempirical quantum chemical PM7 method was employed for structure optimization 

and genetic algorithm for variable selection. 

 

The final MLR models have good statistical parameters and predictive power.  

 

Molecular descriptors related to the number of 6-membered rings in the structure, basic pKa 

capacity and the number of ring secondary C(sp3) have significant influence on the 

insecticidal activity.  
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