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Abstract  

Development of 2, N6-disubstituted 1,2-

dihydro-1,3,5-trizine-4,6-diamines 

derivatives were carried out by quantitative 

structure–activity relationship (QSAR) 

analyses. The nature of the substituent(s) on 

C-2; the nature of the substituent(s) on the 

distal aryl ring; as well as the nature and 

length of the flexible tether between the 

rings, to find out the structural requirements 

of their antimalarial activities against 

cycloguanil resistant (FCR-3) Plasmodium 

falciparum strain and sensitive to 

pyrimethamine. The statistically significant 

best 2D QSAR models for FCR-3, having 

correlation coefficient (r2) = 0.9821 and 

cross validated squared correlation 

coefficient (q2) = 0.6471 were developed by 

multiple linear regression stepwise (SW–

MLR) forward algorithm. The results of the 

present study may be useful on the 

designing of more potent analogues as 

antimalarial agents. 
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1. Introduction 

Malaria is one of the most widespread 

diseases in the world. According to WHO 

estimates 40% of the world’s populations 

presently live under malarial threat [1]. 

Around 300 and 500 million cases of 

malaria occur annually, leading to 1-3 

million deaths [1]. Its control is globally a 

high priority task. Although effective 

antimalarial agents have been known for a 

long time, the alarming spread of drug 

resistant strains of Plasmodium falciparum, 

which is the most lethal parasite species, 

undergoes the urgency and continuous need 

for the discovery of new therapeutics. A 

major initiative in this direction is to find 

enzyme targets that are critical to the disease 

process or essential for the survival of the 

parasite. Identification and design of novel 

chemical entities specifically affecting these 

targets could lead to better drugs for the 

treatment of malaria [2].  

           

Pyrimethamine, trimethoprim and 

cycloguanil inhibit malarial dihydrofolate 

reductase (DHFR), one of the few well-

defined, validated targets in malarial 

chemotherapy [3]. These antimalarials 

inhibit DHFR by competing with the natural 

substrate dihydrofolic acid. Unfortunately, 

point mutations at certain amino acid 

residues surrounding the P. falciparum 

DHFR active site have resulted in resistance, 

compromising the clinical effectiveness of 

pyrimethamine and cycloguanil [4,5]. 

Despite this, the folate pathway remains a 

good target for malarial chemotherapy 

because the enzyme is limited in its 

mutational capability, owing to loss in 

enzyme function [6-8]. 
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A series of cycloguanil-like compounds that 

possess a flexible tether interpolated 
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between the 1,2-dihydro- 1,3,5-triazine-4,6-

diamine heterocycle and the substituted 

phenyl ring [9].  So, rather than identifying 

new molecules for efficacy, modified 1,2-

dihydro- 1,3,5-triazine-4,6-diamine 

heterocycle having many advantages and 

efficiency are now in priority for 

antimalarial chemotherapy. 

 

2. Experimental 

2.1. Data set 

A data set of 28 compounds of side chain 

modified 1,2-dihydro- 1,3,5-triazine-4,6-

diamine heterocycle for antimalarial 

activities against  pyrimethamine and 

cycloguanil sensitive and resistant (FCR-3) 

P. falciparum strains was used for the 

present 2D QSAR study [10]. There is high 

structural diversity and a sufficient range of 

the biological activity in the selected series 

of these derivatives (Table 1). It insists as to 

select these series of compounds for our 

QSAR studies. The biological activity 

values [IC50 (nM)] reported in literature 

were converted to their molar units and then 

further to negative logarithmic scale (pIC50) 

and subsequently used as the dependent 

variable for the QSAR analysis. 

 

Table No.1   Structures and antimalarial activity of 2,N6-disubstituted 1,2-dihydro-1,3,5-triazine-

4,6-diamines 

NH

N

N

NH

H2N
R1

R2

Ar

 

Comp. 

No. 
R1 R2 Ar IC50 

1 -CH3 -CH3 
 

49.75 

2 
  

9.89 

3 -CH3 -CH3 Cl

 
16.55 
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4 -H NO2

 Cl

Cl

 

11.12 

5 -H F

 Cl

Cl

 

8.41 

6 -CH3 -CH3 O Cl

 
11.33 

7 -H 
 

O Cl

 
7.11 

8 -H 
 O Cl

Cl

 

6.73 

9 -H 
 O

Cl

Cl

Cl

 

4.32 

10 -H 
O

 
O Cl

 
0.99 

11 -H NO2

 
O Cl

 
7.39 

12 -H 

Cl

 

O Cl

 
6.66 

13 -H 
 

O Cl

 
4.59 

14 
 

O Cl

 
7.94 
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15 -H OCH3

 
O Cl

 
6.66 

16 -H N

 
O Cl

 
44.75 

17 -H F

 
O Cl

 
6.21 

18 -H CF3

 
O Cl

 
5.54 

19 -H 
 

S Cl

 
1.30 

20 -CH3 -CH3 S Cl

 
7.84 

21 -H 
 O

Cl

 

4.53 

22 -H 
 O

Cl

Cl

 

4.52 

23 -H 
 O

F

 

10.85 

24 -H 
 

O NO2

 
3.87 

25 -H 
 

O OCH3

 
12.31 

26 -CH3 -CH3 O Cl

 
7.20 
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27 -H 
 

O Cl

 
2.71 

28 -H 
 

O Cl

 
1.36 

 

All 28 compounds were built on workspace 

of molecular modeling software VLife MDS 

3.5 (Vlife Sciences Technologies Pvt. Ltd. 

Pune, India) and then the structure was 

converted to three-dimensional space for 

further analysis. All molecules were batch 

optimized for the minimization of energies 

using Universal force field (UFF) followed 

by considering distance-dependent dielectric 

constant of 1.0, convergence criterion or 

root-mean-square (RMS) gradient at 0.01 

kcal/mol A˚ and the interaction limit to 

10,000 [11]. The energy-minimized 

geometry was used for the calculation of the 

various 2D descriptors (Individual, Chi, 

ChiV, Path count, ChiChain, ChiVChain, 

Chainpathcount, Cluster, Pathcluster, Kapa, 

Element Count, Estate number, Estate 

contribution, Semi-impirical, Hydrophillic–

hydrophobic and Polar surface area). The 

various alignment-independent (AI) 

descriptors were also calculated. For 

calculation of alignment, the independent 

descriptor was assigned the utmost three 

attributes. The first attribute was T to 

characterize the topology of the molecule. 

The second attribute was the atom type, and 

the third attribute was assigned to atoms 

taking part in the double or triple bond. The 

preprocessing of the independent variables 

(i.e., 2D descriptors) was done by removing 

invariable (constant column), which resulted 

in total 289 descriptors to be used for QSAR 

analysis. 

 

The manual data selection method [12-15] 

was adopted for division of training and test 

data set comprising of 21 and 7 molecules, 

respectively. Seven compounds, namely 1.1-

1.7 were used as test set while the remaining 

molecules were used as the training set by 

considering chemical variation. The 

unicolumn statistics of the training and test 

sets is reported in Table 2.
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Structures of Test set compounds 

 

2.2. Feature selection and model 

development  

Feature selection is a key step in QSAR 

analysis. An integral aspect of any model-

building exercise is the selection of an 

appropriate set of features with low 

complexity and good predictive accuracy. 

This process forms the basis of a technique 

known as feature selection or variable 

selection. Among several search algorithms, 

stepwise (SW) forward–backward variable 

selection method, genetic algorithms (GA) 

and simulated annealing (SA) based feature 

selection procedures are most popular for 

building QSAR models and can explain the 

situation more effectively [14-16]. 

In the selected equations, the cross-

correlation limit was set at 0.5, the number 

of variables at 10, and the term selection 

criteria at r2. An F value was specified to 

evaluate the significance of a variable. The 

variance cutoff was set at 0, with auto 

scaling in which the number of random 

iterations was set at 100. In SW forward–

backward variable selection algorithm, the 

model is repeatedly altered from the 

previous one by adding or removing a 

predictor variable in accordance with the 
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‘stepping criteria’ (in this case F= 4 for 

inclusion; F= 3.99 for exclusion for the 

forward–backward selection method). In GA 

method, population and number of 

generations were set as 10 and 1000, 

respectively and speed of 9999. 

2.3. Model quality and validation 

The developed QSAR models are evaluated 

using the following statistical measures: n, 

(the number of compounds in regression); k, 

(number of variables); DF, (degree of 

freedom); optimum component, (number of 

optimum PLS components in the model); r2, 

(the squared correlation coefficient); r2se, 

(standard error of squared correlation 

coefficient); F test, (Fischer’s value) for 

statistical significance; q2, (cross-validated 

correlation coefficient); q2_se, (standard 

error of cross-validated square correlation 

co-efficient); pred_r2, (r2 for external test 

set); pred_r2se, (standard error of predicted 

squared regression); Z score, (Z score 

calculated by the randomization test); 

best_ran_q2, (highest q2 value in the 

randomization test); best_ran_r2, (highest r2 

value in the randomization test). The 

regression coefficient r2 is a relative measure 

of fit by the regression equation. It 

represents the part of the variation in the 

observed data that is explained by the 

regression. However, a QSAR model is 

considered to be predictive, if the following 

conditions are satisfied: r2 > 0.6, q2 > 0.6 

and pred_r2 >0.5 [13]. The F-test reflects the 

ratio of the variance explained by the model 

and the variance due to the error in the 

regression. High values of the F-test indicate 

that the model is statistically significant. The 

low standard error of r2 (r2_se), q2 (q2_se) 

and pred_r2 (Pred_r2se) shows absolute 

quality of fitness of the model.  

Internal validation was carried out using 

‘leave-one-out’ (q2, LOO) method [17]. The 

cross-validated coefficient, q2, was 

calculated using the following equation: 

 

Where yi, and ŷi are the actual and predicted 

activity of the ith molecule in the training set, 

respectively, and ymean is the average activity 

of all molecules in the training set.  

However, a high q2 value does not 

necessarily give a suitable representation of 

the real predictive power of the model for 

antimalarial ligands. So, an external 

validation was also carried out in the present 

study. The external predictive power of the 

model was assessed by predicting pIC50 

value of the nine test set molecules, which 

were not included in the QSAR model 

development. The predictive ability of the 
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selected model was also confirmed by 

pred_r2. 

 

where yi, and ŷi are the actual and predicted 

activity of the ith molecule in the test set, 

respectively, and ymean is the average activity 

of all molecules in the training set.  

 

3. Results and discussion  

The QSAR study of 28 new side chain 

modified 1,2-dihydro- 1,3,5-triazine-4,6-

diamine heterocycle derivatives for 

antimalarial activities (Table 1) through 

MLR methodology, based on various feature 

selection methods viz. SW using VLife 

MDS 3.5 software resulted in the following 

statistically significant models (Table 2), 

considering the term selection criterion as r2, 

q2 and pred_r2. The training and test sets 

were selected by manual selection method 

and the models were validated by both 

internal and external validation procedure. 

To ensure a fair comparison, the same 

training and test sets were used for each 

model’s development. A Uni-column 

statistics for training set and test set was 

generated to check correctness of selection 

criteria for trainings and test set molecules.

 

Table 2: Developed 2D-QSAR Model 

Size Equation r2 q2 F test r2 se q2 se 

 

Training 

Set Size = 

20 

Test Set 

Size = 8 

Activity = + 0.2708(± 0.0122) 

T_N_O_5 + 0.5878(± 0.0400) 

SulfursCount - 0.0305(± 0.0032) 

SsCH3E-index - 0.0339(± 

0.0087) T_C_N_4 - 0.0893(± 

0.0400) T_O_F_3 + 0.4860 

 

0.9821  

 

 

0.6471  

 

 

 153.9562  

 

 

0.0386   

 

 

0.1714 

 

Model 1 (SW–MLR) 

Activity = + 0.2708(± 0.0122) T_N_O_5 + 

0.5878(± 0.0400) SulfursCount - 0.0305(± 

0.0032)   SsCH3E-index - 0.0339(± 0.0087) 

T_C_N_4 - 0.0893(± 0.0400) T_O_F_3 + 

0.4860. 

The statistically best model (Model 1) for 

antimalarial activity against FCR-3 with a 

coefficient of determination (r2) =0.9821 

was considered.  
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Prediction of activity: 

The generated equation was used to predict 

the activity of test set as compare to actual 

activity with respect to various 

physicochemical parameters. The MLR 

model shows better results as compare to 

two other models (PCR and PLR). Therefore 

the activity predicted by MLR is only 

considered in this study (Table 3).

 

 

Table 3: Predicted Activity of Compounds (Test set) by MLR. 

Test Compound No. Antimalarial Activity Predicted Difference 

02 0.1011 0.079829   0.02127 

11 0.1353 0.147532 -0.0122 

17 0.1610 0.181383 -0.0203 

21 0.2207 0.181383   0.03931 

22 0.2212 0.181383   0.0398 

26 0.1388 0.333176 -0.1943 

 

Multiple linear regression (MLR), Principal 

component regression (PCR) and Partial 

Least Squares regression (PLR) were carried 

out to find out the factors responsible for the 

biological activity (Table 3). Contribution 

chart, (% contributions of different 

descriptors in Model 1 / Equation 1) 

representing the contribution of descriptors 

in the 2D-QSAR model developed by MLR 

is shown in Fig 1. 
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Figure1: Contribution plot of various descriptors. 

Descriptors description: 

From any other Oxygen atom (single double 

or triple bonded) by distance of 5 bonds in a 

T_N_O_5 is the count of number of 

Nitrogen atoms (single double or triple 

bonded) separated molecule. 

T_C_N_4 is the count of number of Carbon 

atoms (single double or triple bonded) 

separated from any other Nitrogen atom 

(single double or triple bonded) by distance 

of 4 bonds in a molecule. 

T_O_F_3 is the count of number of Oxygen 

atoms (single double or triple bonded) 

separated from any other Fluorine atom 

(single double or triple bonded) by distance 

of 3 bonds in a molecule. 

SsCH3E-index: Electrotopological state 

indices for number of -CH3 group connected 

with one single bond. 

Sulferscount is the number of sulfur atoms 

presents in a molecule. 
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Figure-2: Correlation plots of observed and predicted activities of the training and test 

compounds for best QSAR Model. 

Table 4: Percent Contribution of Descriptors. 

Sr.No. Parameter Result 

1.  T_N_O_5   44.98% 

2.  SulfursCount 31.38% 

3.  SsCH3E-index   -11.70% 

4.  T_C_N_4   -7.17% 

5.  T_O_F_3   -4.77% 
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T_N_O_5 and Sulfurs Count are directly 

proportional while T_O_F_3, T_C_N_4, 

SsCH3E-index are inversely proportional to 

the antimalarial activity. T_N_O_5 

resembles optimal chain length at N6 

substitution. T_O_F_3 resembles the 

optimal position of Fluorine at aryl 

substitution. T_C_N_4 resembles triazine 

ring. SsCH3E-index resembles 

electrotopology of number of CH3 groups 

attached at C-2 position. Sulfurs Count 

denotes the presence of sulfur at N6 chain is 

beneficial for activity.  

4. Conclusion 

The present work shows how a set of 

antimalarial activities of various 1,2-

dihydro- 1,3,5-triazine-4,6-diamine 

heterocycle may be treated statistically to 

uncover the molecular characteristics which 

are essential for  high activity. The 

generated models were analyzed and 

validated for their statistical significance and 

external prediction power. The awareness 

and understanding of the descriptors 

involved in antimalarial activity of these 

compounds could provide a great 

opportunity for the ligand structures design 

with appropriate features, and for the 

explanation of the way in which these 

features affect the biological data upon 

binding to the respective receptor target. The 

results derived may be useful in further 

designing more novel antimalarial agents in 

series.  
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