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Abstract: The Arctic system is one of the most vulnerable regions under climate change conditions 

and it has suffered important changes on last decades. Several recent studies have suggested the 

influence of moisture transport in the observed sea ice loss in this region. Atmospheric rives (ARs) 

represent one of the main mechanism of global moisture transport, being especially relevant in the 

connection between lower and higher latitudes. The objective of this is work is to identify the main 

areas where the moisture is anomalously uptake for the ARs that reach the Arctic polar region. For 

this purpose, the lagrangian model FLEXPART was used to analyse moisture sources for those 

regions of maximum occurrence of ARs to the Arctic for the period 1997-2014 in order to analyse 

the anomalous origin of moisture transported by these meteorological structures. The region of 

maximum occurrence of ARs was defined taking into account the number of the systems that reach 

60ºN during August and September when sea ice is minimum over the Arctic Ocean. For these 

regions and considering those days of ARs occurrence, the anomalous moisture sources were 

defined in relation to the mean situation for the complete period. From the results, main moisture 

sources for ARs events extends over the North Atlantic and North Pacific oceans, moreover, local 

input of moisture over the region of maximum ARs occurrence seems to be especially relevant. It is 

interesting to highlight the moisture uptake from Eastern Asia during August. In general, it could 

be conclude that for ARs events the moisture uptake around and over the maximum occurrence 

area highly increase becoming relevant sources of moisture feeding up the event. 

 

1. Introduction 

The Arctic is suffering for important changes in recent decades associated with the climate 

change. One of the most relevant change observed over this region is the extreme reduction in sea 

ice, which has shown a downward trend in its extent in the last few decades for all seasons [1-4] and 

being the decrease more pronounced on late summer [5-6], when sea ice reaches its minimum annual 

value. Several recent studies have investigated the causes of this decrease, being changes in moisture 

transport from lower latitudes one of the possible factors suggested to affect the region [7-9].  

Multiple mechanisms are responsible for the global moisture transport, being the Atmospheric 

Rivers (ARs) one of the most important. ARs are long and narrow corridors, which transport water 

vapour meridionally from lower to higher latitudes. Despite covering only approximately 10 % of the 

Earth’s circumference, these atmospheric structures account for over 90% of the total poleward water 

vapour transport at midlatitudes [10] and are associated with extreme events of precipitation [11-14]. 

Gimeno et al. [15] have realized a minireview of the general characteristics of ARs. 
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According to Sorterberg and Walsh [16], interannual variability on moisture transport toward 

the Arctic is mainly related to the variability on cyclone activity over the Greenland Sea and Eastern 

Siberian Sea, and of course, ARs are absolutely related with the cyclone activity in these latitudes. 

Despite its formation may be independent of the genesis and development of cyclones, cyclone 

activity may have an influence on ARs development [10].  

Despite the importance of ARs in moisture transport, and their influence in the Arctic warming 

[e.g., 17], their influence on the Arctic region have not already been deeply investigated in these terms 

pointed here. The aim of this work is to establish the first step for a more complete analysis about 

those areas that support anomalous moisture to the Arctic ARs. For this purpose, and employing the 

lagrangian model FLEXPART, the origin of the anomalous moisture vapour feeding up the ARs at 

60°N is analysed for August and September during the period 1997-2014.  

 

2. Experiments  

3.1. Location of the maximum occurrence regions of ARs. 

 In order to investigate the ARs that affect the Arctic region, the ARs database developed by Guan 

and Waliser [18] was used. This database provide the ARs position on a global scale with 1°x1° 

horizontal resolution along the year with a time step of 6 hours (00, 06, 12, 18 UTC). AR detection is 

based on the computing of the vertically integrated horizontal water vapour transport (IVT) between 

1000 and 300 hPa, taking into account the specific humidity and wind field retrieved from the 

ECMWF Interim reanalysis (ERA-Interim) [19]. At each grid cell, the 85th percentile is applied as a 

threshold with a fixed lower limit of 100 kgm-1s-1 (for polar regions). Once the threshold has been 

applied, the coherence on the IVT direction is analysed by discarding those regions with more than 

half of the grid cells showing deviations of more than 45° from the mean IVT and those that do not 

have an appreciated poleward component. From this procedure a set of ARs is detected. Further 

details can be found at Guan and Waliser [18]. 

From the previous database, the regions of maximum occurrence of ARs are identified for 

August and September for the period 1997-2014. In order to analyse the ARs affecting the Arctic we 

considered only those systems that reach a 10° latitudinal band centered on 60°N around all the 

Arctic. Then, over this band, we detect the areas of maximum occurrence of ARs as those with more 

ARs than the 75th percentile of it monthly frequency. 

3.2. Moisture sources 

 The lagrangian model FLEXPART v9.0 [20-21] is applied to analysed the moisture sources for 

the areas of maximum AR occurrence previously defined. FLEXPART uses ERA-Interim reanalysis 

data on 1° horizontal resolution to track the atmospheric moisture. The atmosphere is divided into 

air parcels (or particles) which are dispersed following the 3-D wind field. For every air parcel the 

specific humidity (q) and the position is stored every 6 hours and moisture changes can be expressed 

as  

𝑒 − 𝑝 = 𝑚
𝑑𝑞

𝑑𝑡
 

representing e and p moisture increases and decreases, m the mass of the particle and t the time. If 

the (e-p) for all the particles at every grid position is considered it can be obtained the total surface 

freshwater flux (E-P), being (E) and (P) the rates of evaporation and precipitation per unit area 

respectively. 
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FLEXPART model can be applied to follow particles backward and forward in time. Backward 

modelling allows the location of moisture sources for specific regions. In this case, to localize the 

sources of moisture for the ARs maximum occurrence areas, the particles were followed backward in 

time for 10 days (the average residence time of water vapour in the atmosphere [22]. 

In order to analyse the anomalous moisture uptake associated with ARs reaching the Arctic, the 

method employed by Ramos et al. [23] was applied. Following this methodology backward 

trajectories were followed for 10 days at 6h intervals (40 time steps) for every of the ARs cases. With 

the purpose of compute the moisture uptake, only positive values of (E-P) were retained at each and 

every time step. The area of anomalous moisture uptake was obtained by computing the anomaly 

between (a) the total (E-P) > 0, considering every case of ARs occurrence at 6h intervals (taking into 

account the 10 days backward trajectories) and (b) the ‘climatology’ for the corresponding ARs cases. 

On this work, an AR case will be defined as every one of the times on which an AR occurs at 6 hours 

interval. For example, if an AR takes place from 00:00 UTC to 18:00 UTC on 15 September 1999, 4 AR 

cases will be considered (00, 06, 12 and 18 UTC). The climatology is calculated considering only the 

dates of ARs occurrence but for all the 18-year period in consideration in this study, 1997-2014. For 

instance, if an AR case was detected on 15 September 1999 at 12:00 UTC, the climatology will consider 

the 15 September at 12:00 for every year of the period 1997-2014. As previously explained, only 

positive values of E-P were considering at every of the 40-time steps (10 days backward every 6 

hours). This climatological value will be denoted hereinafter as (E-P)CLI > 0. The anomaly is calculated 

by the difference between (a) and (b) and it is denoted as (E-P)AN > 0. 

  

3. Results and discussion 

 In order to define the areas of maximum ARs occurrence, figure 1 shows the number of ARs for 

each longitude from 55°N to 65°N and their geographical distribution for August and September. On 

this figure, blue line represents the longitudinal variability on the number of ARs and the horizontal 

red line represents the value of its 75th percentile. Embedded at the bottom on this figure, ARs 

frequency appears represented for every grid point over the longitudinal band previously defined. 

On this plot, reddish colours represent higher ARs occurrence and bluish colours lower ARs 

frequency. 

 

Figure 1. ARs occurrence over the area between 55 and 65°N for August and September 

over the period 1997-2014. The blue line represents the number of ARs for every longitude 

and the box embedded in the plot show the spatial distribution of ARs. Reddish colours 

represent the areas with higher AR occurrence and bluish colours those with the lower 

occurrence.   
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Taking into account only those regions where the ARs number exceed the 75th percentile, the 

areas of maximum occurrence can be defined. In August the maximum ARs frequency occurs over 

the Pacific Ocean, between 142.5 – 225.5°E, affecting the Bering Sea, the Sea of Okhotsk and western 

Alaska. For this month, a very small isolated area of high values of ARs appears over the Davis Strait, 

however considering the small area it represents and the low values compared with the Pacific 

region, this area was not taking into consideration. For September two important areas of ARs 

occurrence can be found, one over the Atlantic Ocean, and another over the Pacific. Over the Pacific, 

higher values occur between 207.5 and 242.5°E, over the Gulf of Alaska, and for the Atlantic Ocean 

between -37.5°W and 15°E.  

    Once the areas of maximum occurrence were defined for each month, it is possible to analyse 

their sources of moisture. For this purpose, figure 2 shows the climatological sources (those regions 

with (E-P)CLI > 0 values) for both months in the period 1997-2014. On August, most of the moisture 

reaching the pacific area of maximum ARs occurrence is mainly taken from the continental areas 

inside and around it. Highest values on (E-P)CLI occur over Alaska, Russian Far East, and eastern 

China. Some moisture is also provided by the Pacific Ocean, in a band between 25-40° N 

approximately. On September most of the moisture contribution comes from oceanic areas. The 

Pacific maximum occurrence area is supplied by moisture from the northern Pacific. In the case of 

the Atlantic area, main moisture source is located along the Atlantic Ocean on the path of northern 

hemisphere cyclones. Moreover, this latest area receives moisture from continental areas over North 

America and Europe, despite their contribution is lower than the oceanic one. 

 

Figure 2. Moisture sources ((E-P)CLI>0 regions) calculated for August and September over 

the period 1997-2014 for regions of maximum ARs occurrence represented by the red 

boxes. Scale in mm/day. 

 Finally, figure 3 shows the anomaly on (E-P) for ARs cases ((E-P)AN > 0). As explained before 

only the specific times of AR occurrence are taking into consideration for the calculation. The number 

of AR cases considered for every region and month are shown on Table 1.  
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Table 1. Number ARs cases detected by month over the period 1997-2014 for each region of 

maximum occurrence. 

 August September 

Pacific Ocean 1677 1173 

Atlantic Ocean  616 

In August, it can be observed as almost the total of the climatological sources increased its 

moisture uptake during ARs events. Despite positive anomalies can be found over the Pacific Ocean, 

the higher increases appear over continental areas, coinciding with those areas showing higher (E-

P)CLI values on the climatological results. In September, general increases in the moisture sources can 

be observed, as in August, for both Pacific and Atlantic areas. This increase, for the Atlantic area of 

maximum occurrence, is higher over the region itself and gradually decreases with the distance. For 

the Pacific area, higher moisture increase is located over the Gulf of Alaska, being lower over the rest 

of the source. It is important to highlight that the value of the growth for the moisture uptake over 

the sources shows more than the double during the occurrence of ARs systems, comparing with 

climatological values. 

 

Figure 3. Anomaly for the moisture sources ((E-P)AN>0 regions) for August and  

September for the regions of maximum ARs occurrence (red boxes) calculated for those 

days of ARs occurrence and referred to the climatological value over the period 1997-2014. 

Scale in mm/day. 

4. Conclusions  

In this work the origin of moisture feeding up the ARs affecting the Arctic was analysed for 

August and September. Areas of maximum ARs occurrence for the Arctic region are mainly located 

over the North Pacific (for August and September, with different longitudinal extension) and the 

North Atlantic (in September).  

Moisture sources for the areas of maximum ARs occurrence were analysed and the results point 

to that the main moisture sources in August are located over continental areas of East Eurasia and 

Alaska for the Pacific area of maximum occurrence, and for September for both areas (Atlantic and 

Pacific) the moisture sources are located mainly over the ocean, to the southwest of the region itself. 
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For those days of ARs occurrence, moisture sources appear highly intensified, showing values 

that exceed more than twice the climatological value in some regions. In general, higher 

intensifications occur over the regions object of the study and decrease with the distance.  
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