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Introduction

* Tropical South America (TropSA) o
concentrates a large amount of net radiation
and water vapor.

 |Intense heat and humidity fluxes dominate
the interactions between soil and lower
atmosphere.

 Soil moisture modulates diverse land-
atmosphere feedbacks (LAFs); similarly, the
rates of change between dry and wet
conditions in the soll necessarily impact
surface temperatures.
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Introduction

 |nterannual timescales are mainly controlled
by ENSO (Trenberth et al., 1997, 2001, 2002,
2008; Wang, 1999, 2001; Wang et al., 2017).

 Known roles of land-surface interactions
(Brubaker and Entekhabl, 1996; Koster et al.,
2004; Xue et al., 2006; Bagley et al., 2014,
Rocha et al., 2015; Ruscica et al., 2015;
Kolstad et al., 2017; Zemp et al., 2017)
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Analysis of feedback mechanisms in
land-atmosphere interaction

Kaye L. Brubaker' and Dara Entekhabi

Ralph M. Parsons Laboratory, Massachusetts Institute of Technology, Cambridge

Abstract. The initiation of a hydrologic drought may depend on large-scale or
teleconnective causes; however, local positive feedbacks in the land-atmosphere system are
believed to contribute to the observed persistence and intensification of droughts. In this
study a basic linearization technique is combined with a nonlinear stochastic model of
land-atmosphere interaction to analyze and, more importantly, quantity feedback
mechanisms that arise in the coupled water and energy balances at the land surface. The
model describes land-atmosphere interaction by four coupled stochastic ordinary
differential equations in soil moisture, soil temperature, mixed-layer humidity, and mixed-
layer potential temperature. The solution is a physically consistent joint probability
distribution. The steady and perturbation-induced parts of the model equations are
decomposed into the dependence of each component physical process upon each model
state. Because of the negative correlation between soil moisture and soil temperature, the
physical mechanisms that serve to restore each state individually (largely soil moisture
control of evaporation and temperature dependence of saturation specific humidity) act as
significant anomaly-reinforcing mechanisms for the other state.
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Figure 1.

atmosphere.

Conceptual diagram of well-known linkages
among heat and moisture states in the soil and near-surface

duction

Decomposition of the steady- and perturbation-forcing func-
tions into the dependence of each component physical process
upon each model state shows the following:

1. Soil moisture control of infiltration and of evaporation
efficiency are self-restoring forces of comparable strength for
the soil moisture state.

2. The temperature dependence of surface saturation spe-
cific humidity is a major factor in reinforcing soil moisture
anomalies.

3. The individually strong, multiple (mostly radiative) ef-
fects of atmospheric humidity on ground temperature take
opposite signs and cancel one another.

4. Soil moisture control of evaporation efficiency is the
major mechanism by which the moisture state tends to rein-
force temperature anomalies.

5. The temperature dependence of surface saturation spe-
cific humidity is a major self-restoring factor for the tempera-
ture state, and it exceeds the thermal radiation factor.

6. The buoyancy velocity is a significant recovery factor for
temperature anomalies because it affects both the soil temper-
ature and its coupling to air temperature. Soil temperature is
positively correlated with temperature gradient anomalies;
when the soil is anomalously warm, a strong gradient that
enhances cooling also tends to be present.

7. Both the soil moisture and the soil temperature state are
more susceptible to variations in wind speed (noise) when the
system is dry than when it iS moist.

It is well known that the soil moisture and soil temperature
states are negatively correlated (cool/moist or warm/dry).
These soil states communicate their covariability partially
through local-scale interaction with the near-surface atmo-
sphere. Because of the negative correlation between the states,
the physical mechanisms that serve as restoring forces for each
state individually (soil moisture control of evaporation and
temperature dependence of saturation specific humidity) act as
anomaly-enhancing positive feedback mechanisms for the
other state. These feedback mechanisms are not apparent if
the hydrologic variable soil moisture is considered alone. The
coupled energy balance and energy states of the soil and near-
surface atmosphere must be taken into account when seeking
to understand and predict the persistence of hydrologic anom-
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Links structure witH
Graph Theory

Conceptual scheme of interconnections
among the main variables involved in
the studied land surface-atmosphere
feedbacks (LAFs), adapted as a graph
from Brubaker and Entekhabi (1996),
and hierarchized by number of
connections of each variable.

The state (process) variables are
denoted as circles (diamonds) nodes.

Evaporation is the most heterogeneous
process involved in LAFs since it
connects soil humidity with the other
state variables
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Objectives

1. To study the essential role of Land Atmosphere
Feedbacks and the mechanisms involved in
water and heat anomalies in TropSA at
iInterannual timescales.

2. To explore new tools to advance our
understanding of land surface-atmospheric
feedbacks in TropSA.

3. To integrate classical analyses of climatic fields
with more recent methods of information theory
and graph theory including linear and non-linear
analysis.
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Data and Methods
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Data

Visualize and Download GPCC Products

e

o

o

<

GPCC Product Spatial Resolution Possible Applicatio

First Guess Monthly 1.0° 2004 - present drought monitoring

First Guess Daily 1.0° 2009 - present analysis of extremes

Monthly Monitoring Version 5 1.0°, 2.5° 1982 - nt calibration of satellite data
0.5% 1.0%, 2.5° hydrological studies

Full Data Daily Version 1 1.0° 1988 - 2013 analysis of extremes

HOAPS/GPCC global daily precipitation Version 1 0.5% 1.0%, 2.5° 1988 - 2008 analysis of extremes

HOMPRA Europe Version 1 (coming soon) 1.0° 1951 - 2005

n/LAND

Interim, Monthly M« X

-afinterim-land/type=an/
ts/data/interim-full-moda/levtype=sfc/ bg
c ECMWF Home Chart dashboard Contact Juan mauricio bedoya soto | Sign out

- .
N CW' vv Home Chart dashboard Contact Juan mauricio bedoya soto | Sign out
E F About  Forecasts Computing Research  Learning

About  Forecasts Computing  Research  Learning _ ERA Interim/LAND
ERA Interim, Monthly Means of Daily Means I —

Model levels Forecast . .
- - Please note that the fields shown on this interface are a subset of the ERA Interim dataset. The complete dataset (including Select a date in the interval 1979-01-01 to 2010-12-31
O aLemDeratLe wave fields) Is available via the batch access. The full list of fields can be found here. Start date: [1976.01.01 | End date: [oiA2 30 ]
Potential vorticity . .
Select a list of months Conditions of use

Pressure levels 2 i
Apr May Jun Jul Aug Sep Documentation ® Select a list of months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

2
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e
z
2
o
13
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Invariant L5 O/ I/ = B = = R I R Job list 195 % @ 9 0P PR PISE YR P PP @ P
Synoptic Monthly Means 1970 @ PP YV YR Y Y Y Y PR e R e R R R T R e R = R~ R R R R
Monthly Means of Daily Means 1989 ) @ W ¥ P 1990 Y P Y Y 1989 ) W) @ W W @ WY@y e Y@
Monthly Means of Daily 191 W @ @ @ @YY WY WY WYYy Y ¥ ¥ Access Public Datasets 19 ) ¥ ¥ @ 9 P ¥ P Y EIRE P EEEDY S @
Forecast Accumulations 193 @ @ ¥ @ @Y PP PP Y Y E @ General FAQ L B B O B B B B
1995 1996
I‘JESJJJIJJIJJJIJWEGJJJIJJJJJJIJ WEbAp'FA? - @ 0PI RD. PP OE
our A\:cessing orecasts 1997 1998
P T R R R B R R BTt e = I~ B B B~ B B R N St SSsEsEbEEEEESE SSsEsEbEEEBESE
i Rl A e B R~ R B 22 =2 ™ = R R 2~ R ™2
CXTHIIB T JE e e R e R R R~ R = R e R e = R~ = R = R = R R~ N
Documentation =~ = B~~~ B 2~ )
200 ) W @ W @ ¥ PP WP G208 Y Y Y@ P
I B B I 2 B B B 2 B~ B B~
i i 2003 2004
Navigation VewvLeLsaLLsdElR YVewevweweswweswee NS 9 0 P QPP YD DD P PP e @
A 205 W @ W I W PP WP F2N6 Y Y YWY WP P PP D PR Y PP R PR @ B
e I I R I = R R T e R R = R R = R~ R e R = R~ R W9 G W W DY Y E PO Y Y Y Y W @
Job list 00 W W WP Y G0 Y Y EYYY WP Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
I R B = = R = T A = R R = B R = R = R e R = R~ R Select All or Clear
See also... e I I R R B R R R R T P R R R R R R R~ R )
N Select time
Access Public Datasets E I I R B = = R R = T T e R I = B R = R = R e R = R~ R
@ o000:00 @ os:00:00 12:00:00 18:00:00
General FAQ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May jun Jul Aug Sep Oct Nov Dec
Select All or Clear
RG] sellct All or Clear
Accessing forecasts Select parameter
GRIB decoder Select parameter Skin temperature Snow albedo Snow density Snow depth
2 metre dewpoint temperature ¥ 2 metre temperature Soil tem perature level 1 Soil tem perature level 2 Soil tem perature level 3 Soil tem perature level 4
10 metre U wind component 10 metre V wind component Temperature of snow layer ¥ volumetric soil water layer 1 ¥ volumetric soil water layer 2 ® volumetric soil water layer 3
10 metre wind speed Albedo Volumetric soil water layer 4
Boundary laver height Charnock Selece all or Clear

| Convective available potential energy Forecast albedo View the MARS request | Retrieve GRIB | Retrieve NetCDF




Data

Soll moisture (VSW) from Era-Interim
Land 1° x 1°

Specific Humidity at 925 hPa (SH%>), 2m
Temperature (T,,,) and Evaporation (EVP)
from ERA-Interim 1° x 1°

Precipitation (PRC) from GPCC 1° x 1°
All climate fields period 1979-2010
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Methods

SVD, Entropy, and Noise Reduction: After standardized each
variable and apply a Singular Value Decomposition (SVD), we select
the representative modes of each variable at interannual time scale
(noise reduction) using a criterion from the information theory
(Entropy). 5 variables denoised.

Maximum Covariance Analysis of Interannual Variability in TropSA:
We apply a SVD on the covariance matrices thus establishing
connections between all possible pairs of variables (10 possible
combinations)

Graph Models of LAF in Tropical South America at Interannual

Timescales: Establishing connections among variables and defining
relationship structure. We use linear and non-linear metrics as links.
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n A X is the standardized time-space
( A \ U] ( \ matrix for each variable
[ ] |
m X — m > Vina men U[mxm]z[mxn]\/[nxn]
mxn
min(m,n)
men - U[mxm]z[mxn]v[nxn] - Z Uo;vi =uoV, +U,o,vV, +..+U,o.,V,
i=1
Truncated matrix of lower rank k
Y _ T T _ T T T
: L — 2 2 min(n,m) Entropy for each
Relative contribution f, = O'i/zgi H, = Zf log matrix k
of each singular factor i Iogz(mm{n m})
Cummulated contribution F = Z f. min(k ) X FSE Entropy criterion to select k
i = Z P and noise reduction
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Maximum Covariance Analysis (MCA)
with Interannual Variability in TropSA

Covariance matrix

1 A A
C..o =—— XY' FXY _ 52 2 Square covariance fraction
Y T S =0¢/D o
i

I of the k-factor of the MCA

K
T T T \/

Cxv tma1 = Yl Viaw] = 2oV, X, = U X | N

i=1 T Expansion coefficients
. Ve =V, Y

The SVD of couple fields (MCA)

identify only modes in which those

are strongly coupled

Converts a set of correlated

variables to visualize the

We use the first k=3 Maximum Covariance
States (MCS,) to characterize the
cumulative covariance and its space-time

relationships between them distribution o

. . . As aresult we obtain 4 kind of maps
|dentify and order the dimensions

e Symbol Description of ma

Where the data eXthIt the g reateSt p}(’)(k ,YA) Correlation between vector X, fvith each coliumn vector of matrix Y
COV8.I’I ab | I |ty P (yk ) )A() Correlation between vector Y, with each column vector of matrix X
Better ap p r0X| m at| on to th e d ata p (Xk , X) Correlation between vector X, with each column vector of matrix X
US| ng Iess d | menS|OnS p (yk ,YA) Correlation between vector Yy, with each column vector of matrix Y




Non-Linear Dependence: Causality

UNIVERSIDAD

P NACIONAL
(/A% DE COLOMBIA

(Liang 2013, 2014, 2015)

The Liang-Kleeman information flow: Theory and applications

XS Liang - Entropy, 2013 - mdpi.com

Abstract: Information flow, or information transfer as it may be referred to, is a fundamental
notion in general physics which has wide applications in scientific disciplines. Recently, a
rigorous formalism has been established with respect to both deterministic and stochastic
Y9 Cited by 20 Related articles All 10 versions $%

raveling the cause-effect relation between time series

an Liang - Physical Review E, 2014 - APS

Abstract Given two time series, can one faithfully tell, in a rigorous and quantitative way, the
calise and effect between them? Based on a recently rigorized physical notion, namely,
infprmation flow, we solve an inverse problem and give this important and challenging

Cited by 31 Related articles All 7 versicns

Normalizing the causality between time series

X pan Liang - Physical Review E, 2015 - APS

Abstract Recently a rigorous yet concise formula was derived to evaluate information flow,
and hence the causality in|a quantitative sense, between time series. To assess the
importance of a resulting dausality, it needs to be normalized. The normalization is achieved
¥Y Cited by 5 Related articles All 12 versions

PHYSICAL REVIEW E 90, 052150 (2014)

Unraveling the cause-effect relation between time series

X. San Liang"

School of Marine Sciences, Nanjing University of Information Science and Technology (Nanjing Institute of Meteorology), Nanjing 210044

and China Institute for Advanced Study, Central University of Finance and Economics, Beijing 100081, China
(Received 8 June 2014; revised manuscript received 14 October 2014; published 24 November 2014)

Given two time series, can one faithfully tell, in a rigorous and quantitative way, the cause and effect between
them? Based on a recently rigorized physical notion, namely, information flow, we solve an inverse problem
and give this important and challenging question, which is of interest in a wide variety of disciplines, a positive
answer. Here causality is measured by the time rate of information flowing from one series to the other. The
resulting formula is tight in form, involving only commonly used statistics, namely, sample covariances; an

The rate of information (causality)
flowing from a component, say, Y,
to another, say, X, is the change
rate of the marginal entropy of X,
minus the same change rate but
with the effect from Y
instantaneously excluded from
the system.

Absolute Causality formula:
2
T _ CxxnyC ydx nyCx,dy
"t cic, -C,Cl
XX~ yy XX~ Xy

where C,.,C,y C, denot_e the possible
covariances between

series.



Relative Causality (1)

PHYSICAL REVIEW E 92, 022126 (2015)

Normalizing the causality between time series

X. San Liang”
Nanjing University of Information Science and Technology (Nanjing Institute of Meteorology), Nanjing 210044,
and China Institute for Advanced Study, Central University of Finance and Economics, Beijing 100081, China
(Received 18 January 2015; revised manuscript received 31 May 2015; published 17 August 2015)

Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality
in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be
normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional
phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the
marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real
financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business
Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which
has almost faded into oblivion, about “Seven Dwarfs” competing with a giant for the mainframe computer market.

p and g are maximum

likelihood estimators of Z

dH,| dH™

y—>X ‘ y—X

dt || dt %ol

. det(C)
Marginal entropy ce cc
T

dH,;|
dt — p dH;\lmse

= Zét(cdx,dx + pZCxx + qZny - 2 pC

XX

dx,x - 2q(:dx,y + 2 quxy)

dt
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Relative Flow of Information or
Relative causality

Zy—>x
r,.,.=—*100

y—=>X
y—>X

f the resultis 100, x is 100% due to
he flow of information fromy.
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Graph Theory

Time series extracted from the MCA ,,’fbmum,d ,
procedures were used to quantify linear - “f' \ X
(correlations) and nonlinear (causalities) f”’ecm,bn $ 0044,
metrics for different time lags among all pairs T

of variables. PO

All sets of associations were summarized in [ %e; s

the form of correlation and causality graphs in Ny ey,
turn grouped according to their association o,

degree with ENSO. 1 /N

This way, we analyzed how the LAFs over M,
TropSA contribute to explain the simultaneous / "

and lagged interannual anomalies over land 5 'j"fre%.

and atmosphere. ~\/

We also applied spectral analysis to infer links Pt
structure at each lag as a graph using the

adjacency matrix Authoritative sources in a hyperlinked environment

JM Kleinberg - Journal of the ACM (JACM), 1999 - dl.acm.org
Abstract The network structure of a hyperlinked environment can be a rich source of

information about the content of the environment, provided we have effective means for
understanding it. We develop a set of algorithmic tools for extracting information from the link
structures of such environments, and report on experiments that demaonstrate their
effectiveness in a variety of context on the World Wide Web. The central issue we address ...
vy U9 Cited by 8517 Related articles All 194 versions
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Adjacency Matrix of a Graph &
(Llnear and Non-Linear Metrics as Edges)

m /’\ Basic scheme of the interaction between two singular
vectors resulting from a Maximum Covariance Analysis
(MCA) between two variables X and Y for each mode k
Xk leads YR Yk leads X assuming 1 lag-month

p(x,,y,)and Tessy p(yksxk)and Ty

Graphs among three variables (X,
Y, Z) with links denoting lagged
correlations (top left) and
causalities (top right) between
variables/nodes.

@ Ty%z

Bottom panels include the structure

P, :Significant Correlations (P <1%) 7: Causalities
of the graph’s adjacency matrix, W, £ =109 months lag ¢ = 1109 months lag
to illustrate the node-to-node
connection that is established in X Y z X Y z
each graph. X 0 pxn) plx,z) X0 7, 7o
W[ﬁg] =Y | p (yk :xk) 0 Py (yk 9Zk) VV[;j] =Y Tysx 0 [
Z\p(z.%) plz.y) 0 Z o ¢ 0
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Results



Noise Reduction

A . Singular Value Spectrum
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B . Shannon Entropy of Anomalies Matrix

0.9+ —— SH925hPa || 0.9
_ ——EVP
0.8 ."':‘ / \F;g\% ] 0.8t
N 07f ) 1~ 07F
g =
< 06 J 1 & o6 *
© |/ )
3 l = °
3 o5 1 & os
3 o4l 2
£ 0.4 D‘ - 'E 0.4+
- | r
© o3 1 & o3
' TrSA (15°N/20°S - 82°W/40°W) '
ool Base Period : 1979 to 2010 | 0.2
0.1} 1 0.1
% 50 100 150 200 250 300 350 400 SH925hPa  T2m VSW
Gi
m n .I:
Data Source men rank ( X) f1 f2 H, |k, K,
(# of cells 1°) | (# months)
GpPCC Precipitation 1101 372 |0.12|020| 0.76 | 64 |0.76
(PRC)
ERA-Interim Evaporation 1047 372 |0.12|022| 071 | 31 [0.71
(EVP)
ERA-Interim | Volumetric Soil Water 1039 384 348 0.16 | 0.31| 0.61 9 |0.63
Land Content (VSW)
ERA-Interim | Air Temperature (Tzm) 1047 348 030)0.43| 053 | 4 |055
i Specific Humidity at 1047 348 |0.31|045| 050 | 3 |0.53
ERA-Interim 925 hPa (SHQ%)

E\‘i’P PRC

A matrix X with low
relative entropy (Hy)
represents a variable
controlled by few modes
over TropSA at
interannual timescales.
State atmospheric
variables SH®?> and T,,,
are the less complex
variables of our datasets
(64 and 31 k, factors)
Process variables (PRC
and EVP) are the most
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Cyw EMC, EMC, EMC, 4

X Y R BY) [ pOwy) | 67 (BY) [ p06.y,) | 67 (BY) [ plxys) |
SH™® | Tom | 0.78 (0.78) 0.95 0.16 (0.94) 0.96 0.06 (1.00) 0.94 0.09
EVP | Tom | 0.64 (0.64) 0.54 0.23 (0.87) 0.63 0.08 (0.95) 0.53 0.14
PRC | SH’® | 0.63 (0.63) 0.75 0.29 (0.92) 0.51 0.08 (1.00) 0.49 0.12
EVP | VSW | 0.59 (0.59) 0.76 0.18 (0.77) 0.62 0.12 (0.89) 0.61 0.18
EVP | SH" | 0.59 (0.59) 0.52 0.31 (0.90) 0.60 0.10 (1.00) 0.51 0.13
PRC | Tan | 0.59 (0.59) 0.69 0.32 (0.91) 0.54 0.06 (0.97) 0.50 0.13
SH’ | VSW | 0.58 (0.58) 0.67 0.36 (0.94) 0.50 0.06 (1.00) 0.38 0.12
Tom | VSW | 0.57 (0.57) 0.62 0.33 (0.90) 0.55 0.06 (0.96) 0.55 0.14
EVP | PRC | 0.42 (0.42) 0.70 0.34 (0.76) 0.72 0.11 (0.87) 0.70 0.23
PRC | VSW | 0.41 (0.41) 0.77 0.36 (0.75) 0.77 0.08 (0.88) 0.78 0.20

Set of reduced variables over TropSA
(Table) to derive all possible pairs of
truncated matrices for a crosslink
analysis.

We estimate a total of 10 covariance
matrices

The first k=3 MCS, characterize more
than 85% of the cumulative covariance
of each covariance matrix

T, - SHY%® (both state
variables) has the to 78% of its
total covariance in the first
relative fraction

PRC-EVP (42 %) and PRC-
VSW (41 %) concentrate the
lowest fraction in the first
relative fraction



EVP(X) and VSW (¥)

MCAk=1 of X=EVP & Y =VSW fXY1=58'68% - Correlation Maps ( P<1% )- 1979:2010

EVP(X) and VSW (¥)
T

EVP(X) and VSW (V)
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MCA,_, (f,, = 58.68%) of EVP & VSW (15N/20S - 82W/40W) humidity and
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Correlation map 1979:2010 of mean monthly SSTs with x1(EVP VSW)

Correlation map 1979:2010 of mean monthly SSTs with y1(EVP, VSW)
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MCA,_, of X=PRC & Y =SH925 f . =63.15% - Correlation Maps ( P<1% )- 1979:2010

PRC(X) and SH25 (Y) PRC(X) and suszs ) PRC(X) and SH925 (Y) PRC(X) and SH925 (V)
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The spatial

correlation pattern

associated with this

| ‘ pair of variables

70W 50W 70W 50W 70w 50W 70W 50W -1 (MC Sl Of SHQZS_PRC)
MCAk= 1 (fxv = 63.15%) of PRC & SH925 (15N/20S - 82W/40W) exhibits a dipole with
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Results (2)
Graphs with Linear Edges



ENSO-intensities Categorizing

Interannual Oceanic Modes

Cuv MCS, MCS, MCS, « Correlation between MCA
X Y | p(X,,N3.4) | p(y,;,N3.4) | p(x,,N3.4) | p(y,,N3.4) | p(x;,N3.4) | p(y,,N3.4) series and Nifio 3.4

SH™ | Tom -0.44 -0.50 0.15 0.13 -0.20 -0.17 ’

EVP | Tom -0.48 -0.52 0.11 0.12 0.14 0.14 index, for the MCSk,

PRC | SH® -0.25 -0.31 0.40 0.45 -0.20 0.10 k=1,2, and 3.

EVP | VSW 0.4 0.44 0.32 0.36 0.11 0.18 . .

EVP | SH™® -0.44 -0.44 0.20 0.21 0.22 0.05 ¢ ngh correlation values

PRC | Tum 0.32 0.43 -0.32 -0.45 -0.17 0.03 are denoted in blue,

SH™ | vsw -0.43 -0.47 0.36 0.35 -0.10 -0.03 medium values in green

Tom | VSW -0.52 -0.55 -0.30 -0.21 -0.05 -0.09 .

EVP | PRC 0.08 0.19 2048 04 0.22 031 and low values in red.
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MC.ﬂ.k_1 of X=5SH925 & Y =T2m ;m=71.a7% - Correlation Maps ( P<1% )- 1979:2010 ..
™ e rany ‘ —— —— ‘ , Symbol Description of map

. p (Xk , YA) Correlation between vector X, with each column vector of matrix \%

E P (yk , X ) Correlation between vector Y, with each column vector of matrix )A(

g p (Xk , )A() Correlation between vector X, with each column vector of matrix )A(
i P (yk ,V) Correlation between vector Y, with each column vector of matrix Y

MCA . of X=EVP & Y=T2m {, =64.32% - Correlation Maps ( P<1% )- 1979:2010

EVP{X) and T2m (V)

1
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SSTs correlation maps at bottom)
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Thresholds to Define Weight of Graphs,,m ,
Edges
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We define a threshold for the edges magnitude to construct correlation and
causality graphs.
This allow us to study the strongest connections among the studied variables.
In all cases, we select the percentile of 50% of the empirical probability
distribution of causalities and correlations for each time lag.

Pearson Correlation ( p )

o
N

Lag
Metric type Mode
P 0 12 3 4 5 6
Correlation Highest 064 04 033 027 0275 0235 02

Relative Causality (%) ENSO-related 993 48 344 394 269 175 1.08

Correlation values ( p ) per lag (Highest ENSO-related)

e e R i R
0 1 2 Lags(r%onths) 4 5 6

20F

Relative causality ( )

15

10 |

Causality values ( t) per lag (Highest ENSO-related)

4

1
Lags ( %omhs )



Threshold selected as the median of the
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1 lag-month graph using a threshold of significant
correlations higher than 0.4 (1979-2010)

Soil
(best emitter) is essential
over Tropical South

Group 1 of LAF at Tropical South America

Graph Model at lag = 1 Months u, (Emitter) v, (Rec

] Edges as Correlation p > 0.4
o ' ' | America to structurally
Linear feedbacks: .
T,-SH®5 and 055 VSW | feeds back specific
Tom-EVP @12 055 @Sz humidity at 925 (best
T2m | i
ol | m receiver) hPa under the
' % . SHos | group of highest ENSO-
2 s .
w &% related Maximum
i PRC | Covariance States at 1
ok R Sy cvp | mont_h—lag for linear
059 metrics.
Ovsw
! 0 1A 0 T This links structure depicts
05r _ 1 ] Singular Value Spectrum (o) the Land Atmosphere
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" .
< among the variables af gosf o o |1 Vvariables VSW and SH%>
1-month lag S
A i g 061 1 PRC(X) and VSW (Y)
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Orre connected with VSW. | £ 04
VSW acts as trigger off 5 |
LAFs mechanism > 02 £Q
_15 | 1 1 | T
15 -1 05 0 0.5 1 0 @ a
1 2 3 4 5
T
‘4128
At 1 month-lag, VSW dominates linear relationships on PRC,
EVP, SH?> and T,,, at interannual time scales. It remarks the

70W 50W
memory of this variable in the context of LAFs over TropSA
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o
n
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2 lag-month graph using a threshold of significant
correlations higher than 0.33 (1979-2010)
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Volumetric Soil Water
(best emitter) is essential
over Tropical South

Group 1 of LAF at Tropical South America

Graph Model at lag = 2 Months u, (Emitter) 1 (Recejver)

Edges as Correlation p > 0.33 )
! ' o ' ) ' ' America to structurally
Linear feedbacks:
T, -SHZ and 047 VSW T feed; back EVP (best
Tom-EVP ®rom 05 @sHo2 receiver) under the group
R | fem of highest ENSO-related
' % SHo2s | Maximum Covariance
e
s M @ States at 2 month-lag
bt/ Qi
P PRC -
or 03— @EVP| EVP |
A2
@vsw
-1 0 1 -1 0 1
051 y ] Singular Value Spectrum (o)
< Agai.n' VSW Cumulated
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: e — o,(%)
correlations among ©
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_15 | | | | T T
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1 2 3 4 1

Again, but at 2 month-lag, VSW is essential over 7 ) ) ) )
Tropical South America to structurally as emitter of At 2 month-lag, VSW dominates I’"‘?‘" r eIat:onsI:ups
group of highest ENSO-related Maximum on PRC, among EVP, SH*?*> and T,,, at interannual time

Covariance States scales
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3 lag-month graph using a threshold of significant
correlations higher than 0.27 (1979-2010)

Group 1 of LAF at Tropical South America
Graph Model at lag = 3 Months u, (Emitter) v, (Receiver)
Edges as Correlation p > 0.27 2m Temperature (best

1o emitter) and VSW are
Linear feedbacks: o VSW 11 1 essential over Tropical
TonSHE and e o | South America  to

1 EVPVSW I " structurally feeds back
3 SHO25 EVP (best receiver) under
the group of highest

051 1 PRC r ENSO-related Maximum

N i ol Covariance States at 3
pe month-lag.
0 oy :
@EVP o . .
_ s k 0 T 0 ' This links structure depicts
ffga _' ] Singular Value Spectrum (o) the Land Atmosphere
05 R / | Feedbacks between state
© @®12m W Cumulated -
9 _ B o8| o o (%) 1 variable T,, , VSW and
B T, depicts & :
o , = EVP
B the highest E 0.6/
@SH925 . =
At correlations 4 O
among the 8 04r
variables at %
3-month lag > 02r T 1
_15 | | | ?
2 g 0 1 2 0 ? &
1 2 3 4 1
a.
VSW connects PRC feeding back EVP over Tropical At 3 month-lag, soil humidity dominates linear relationships
South America under the group of highest ENSO- on PRC, EVP, SH°?* and T,,, at interannual time scales

related Maximum Covariance States at 3 month-lag
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Results (3)

Graphs with Non-Linear Edges
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0 lag-month graph using a threshold of

relative causality higher than 9.93% (1979- =Tt
Group 1 of LAF at Tropical South America . :
Graph Model at lag = 0 Months u, (Emitter) v, (Receiver) Volumetr'l ¢ S.O ! Watg '
Edges as Causality = >9.93 % (beSt emltter) is essential
! ' ' ' ' over  Tropical  South
2244 VSW | 17 | America to structurally
@m0 @SHa2 _ | | | feeds specific humidity at
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8 é‘% @ highest ENSO-related
b PRC 1T 1 Maximum Covariance
i | States at 0 month-lag for
0 2 @:=vpP EVP F 1+ ] It . 9
A non-linear metrics .
@sw
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05F ' 1 ] Singular Value Spectrum (o) the Land Atmosphere
T T T
NN p— Feedbacks between state
> 8 o8| o o |1 Vvariables VSW-T,, and
= SH925
Rus i g 06
@]
@®rRC § 0.4f
2
©
~ 0.2
_15 1 1 1 1 T T ?
-1.5 -1 -0.5 0 0.5 1 0 =y
1 2 3 4 5

VSW is essential over Tropical South America to
structurally feeds back SH??®> under the group of
highest ENSO-related Maximum Covariance States
at concurrent series (non-linear links)

At 0 month-lag (concurrent), VSW dominates non-linear
relationships on PRC, SH°*> and T,, at interannual time
scales. However, EVP dominates on VSW.
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1 lag-month graph using a threshold of

relative causality higher than 4.8% (1979- Aeaer
Group 1 of LAF at Tropical South America . .
Graph Model at lag = 1 Months u, (Emitter) v, (Receiver) Tom (_beSt emitter) _ IS
Edges as Causality 7 > 4.8 % essential over Troplcal
1o | | | South  America  that
Non Linear feedbacks: vew T I | struc_tgrally L feedbacks
1 L TopSHO?S ovsw | rorn | specific humidity at 925
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CHIRN PRC I 1 Covariance States at 1
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T,, is essential over Tropical South America to 7.
structurally feeds back specific humidity under the At 1 month-lag, EVP, PRC and T,, dominates non-linear
group of highest ENSO-related Maximum relationships on VSW and at interannual time scales

Covariance States at 1 month-lag
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2 lag-month graph using a threshold of relative
causality higher than 3.44% (1979-2010)

Group 1 of LAF at Tropical South America
Graph Model at lag = 2 Months u, (Emitter) v, (Receiver)

] Edges as Causality = > 3.44 %
?oerLFiir;Zesarfeedbacks: .szif.igg"' @2 vew I _ Tom (best emitter) . IS
o Tom | |1 | essential over Tropical
05 . : South America that
W SHO25 1T | structurally feedback VSW
2y ‘0‘?'?9 el H
N (best receiver) hPa under
PRC r .
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0r ®:VP| EVP | {1 {  ENSO-related Maximum
612 .
Covariance States at 2
@®vsw
p 0 11 0 ; month-lag.
051 | 1 Singular Value Spectrum (o) This links structure depicts
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Q
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2
Lo2r T 1
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1.5 -1 0.5 0 0.5 1 0 Q &
1 2 3 4 1
T, Is essential over Tropical South America to At 2 month-lag, VSW dominates non-linear
structurally feeds back VSW under the group of relationships on PRC. At the same time, EVP and
highest ENSO-related Maximum Covariance T,, dominates on VSW at interannual time scales.

States at 2 month-lag and non-linear links
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Results (4)

Comparing Graphs with Linear
and Non-Linear Edges



Graph Model at lag = 4 Months
R Edges as Correlation p > 0.275
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Graph Model at lag = 3 Months u, (Emitter) v, (Receiver) Graph Model at lag = 2 Months u, (Emitter) vy (Receiver)
5 Edges as Causality > 3.94 % Edges as Causality > 3.44 %
v H . [
ovsw @708 @sHo2 4(1 UNIVERSIDAD
1 (- | | | S NACIONAL
o os| - %A% DE COLOMBIA
SHo25 LT e SHe25
2 S F
oy b
05 ®r2m i 1 PRC | PRC ‘ }
)
0 N 1 @isw 1 |
0 11 0 -1 0 1-1 0
3&*’ o=vr
@sHozs o Singular Value Spectrum (o) 05+ ’ , Singular Value Spectrum (r)
05 1 Cumuiated & Cumulated
% ,3.: EUB —© o (%) b, %"8 —© 0%
g kit
Eos b g 0.6
-1 1 (&) o
oFrC 8 o4 ®rre 804
g 2 ©
Loz [+] Y o2 | =}
15 . . . " — 15
-15 -1 05 o 05 1 15 0 -1.5 1 0.5 o 0.5 1 0
1 2 3 4 1 2 3 4 1
rrl rTn
Causality Graphs - -
Graph Model at lag = 4 Months u, (Emitter) v, (Receiver) A y p . Graph Model at lag = 1 Months u, (Emitter) vy (Receiver)
Edges as Causality - >2.69 % Non-Linear Coupling Edges /\ Edges as Causality 7 >4.8%
27 T . > . !
— — —
VSW vew
—— t-6 |t-5[|t-4 ||t-3[[t-2]|t-1]|t
15 ocvr T2m Tom \ ( . F I usw 6 T2m
— - L @rc
SHa25 N p . p SHa25
¥ L PRC SH925 : s PRC
‘g\ EVP N Ve N ’ ( o
- h h EVP
08 EvP — — . - — - 0 OTm Erp
®eRC - PRC ) L ) (. ( 2 Seve
{ 1 0 141 0 1 - - - - - os 0 141 0 1
ok J — P p K
& Singular Value Spectrum () g T2m J ) L ) L ( = . ; Singular Value Spectrum ()
hm@ e ! .‘E ® ‘%S Cumulated
> N p : ~ ) umula
05- Ll 1 Bos ° vsw  EVP ) \ . | ) - 7 F_; 081 —0 o (%)
57 ‘_é - ’I_ ~ - . E o8
@sHo2% 59 06 () () 5
28 . 3 g‘ O PRC N @sH925 o
qk T2m -1.5 @
1 8 o4 1le® —~ - - — 2 04
g = Z T2m () ) [ ) & o
Sz {|©Ouw EVP Soz2f
A5 \ . ° p N | EaY 2 . .
2 1 0 1 2 0 T T & 'g., \ W 2 1 0 1 0 ? @
1 2 3 4 5 — 1 2 3 4 1
i T PRC . ) i %
- - - - — . o Graph Model at lag = 0 Months. u, (Emitter) v, (Receiver
Graph Model at lag = 5 Months u, (Emitter) v, (Receiver) ' Graph's Edge Highest Value of main singular Edges as Causality r > 9.93 % 1 ( ) 1 )
15 ages as Causality 7 >1.75 % - vectors u1 and v1 per each lag graph ' ’ ' '
vsw | S o e
] " er T2m26-
@sH0ls . Edges ratio of correlations or causalities Tom |
1 Pt 2m - ranging 0.9 - 1.1 per each lag graph 05 o
i 3 SHe25 1
oEvP SHa25 . o AT
o & @
5 PRC 1
05 PRC
o
5 - B P R
" - ®usw
0 @8Re -1 0 14 0 1
P - 0 11 0 1
o . -05 Singular Value Spectrum (o)
= , Singular Value Spectrum (o) & 1t ; :
" A Cumulated
0.5 & 2 . un;\;lalgd ¥ g 08t o 0%
2 a k:
T E]
onm 3 R E o6}
28 £os s
- < ®FRC 8 o4t
ousw Soa e
i} & @
2 02r
o2 I s . . . . = T °
-1.5 <@ -1.5 1 -0.5 0 0.5 1 ]
=15 1 0.5 0 05 1 1.5 0 o] 1 2 4 5
1 2 3 4 5
2



/B UNIVERSIDAD
NACIONAL
DE COLOMBIA

Conclusions

The regulatory action of ENSO sets in a stronger memory and resilience of
interactions among state and process variables. VSW is a key variable in defining the
spatiotemporal patterns of PRC and EVP in TropSA at interannual timescales, and as
such plays a major role in regulating LAFs at interannual timescales.

We defined the dominant LAF spatiotemporal patterns by a pair-wise categorization
of variables through Maximum Covariance Analysis (MCA)/Singular-Value
Decomposition (SVD), with the aim of quantify the most salient factors associated
with ENSO over TropSA. With such patterns, we evaluated the relational structure
between state (T,,,,, SH%%°, and VSW) and process (PRC and EVP) variables using
Graph Theory.

The identified structure of correlations (linear) among variables differs from that
derived from causalities (non-linear).

Among the studied variables, T, and VSW exhibit the highest amount of linear
feedbacks (correlation) including the one among them at 1 month-lag, and with
process variables PRC and EVP.

For both the simultaneous and lagged analysis, surface temperature (T,,,), as a state
variable, activates non-linear associations with atmospheric moisture (SH2%) and soil
moisture (VSW) among the high ENSO-related graphs (causality graphs).

Under the ENSO influence, T, is not only a key variable to diagnose the dynamics of
interannual LAFs but also has a substantial role on the dynamics and
thermodynamics of the lower troposphere and soil interfaces over TropSA



