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Abstract: Drawing inspiration from the human vision-touch interaction that demonstrates the 
ability of vision in assisting tactile manipulation tasks, this paper addresses the issue of 3D object 
recognition from tactile data whose acquisition is guided by visual information. An improved 
computational visual attention model is initially applied on images collected from multiple 
viewpoints over the surface of an object to identify regions that attract visual attention. Information 
about color, intensity, orientation, symmetry, curvature, contrast and entropy are advantageously 
combined for this purpose. Interest points are then extracted from these regions of interest using an 
innovative technique that takes into consideration the best viewpoint of the object. As the movement 
and positioning of the tactile sensor to probe the object surface at the identified interest points take 
generally a long time, the local data acquisition is first simulated to choose the most promising 
approach to interpret it. To enable the object recognition, the tactile images are analyzed with the 
help of various classifiers. A method based on similarity is employed to select the best candidate 
tactile images to train the classifier. Among the tested algorithms, the best performance is achieved 
using the k-nearest neighbor classifier both for simulated data (87.89% for 4 objects and 75.82% for 
6 objects) and real tactile sensor data (72.25% for 4 objects and 70.47% for 6 objects).  
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1. Introduction 

Unlike the large number of sensors available and the various techniques for accurately 
interpreting visual and audio data, the sense of touch remains relatively less exploited for robotic 
applications in spite of the crucial role it can play in supporting sensing and environment 
understanding in many practical situations. In particular, human vision-touch interaction studies 
demonstrated the ability of visual information in assisting handling, grasping and dexterous 
manipulation tasks. In a similar manner, tactile sensing could support robot vision by compensating 
in situations where occlusions are present or when force estimates are required in various robotic 
manipulation tasks. Moreover, touching an object in order to recognize it can be inefficient, as 
probing requires direct contact which is lengthy and laborious to achieve in robot applications, where 
the sensor needs to be appropriately positioned and moved to collect quality data. This justifies the 
interest in guiding the tactile probing process such that the acquisition process becomes intelligent 
and efficient by collecting only relevant data. Drawing inspiration from the human vision-touch 
interaction, in this paper we evaluate the effect of human visual attention for detecting relevant areas 
over which tactile data can be collected in view of a subsequent recognition of the probed objects. In 
particular, the main contribution of this work is to demonstrate that a series of interest points 
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computed based on object features that attract visual attention allows for the acquisition of only 
relevant tactile data using a force-resistive (piezo-resistive) tactile sensor array over the surface of 3D 
objects in order to enable their recognition. 

2. Literature Review 

Tactile force sensor arrays are one of the most known and well established tactile sensors. Data 
recuperated by such sensors has been successfully employed for various tasks, including object 
recognition. Symbols in form of embossed numbers and letters are recognized in [1] using a 
feedforward neural network. A bag-of-feature technique is employed by [2] to classify industrial 
objects. The same technique is used in [3], on simulated data as returned by a tactile sensor array to 
estimate the probability of the object identity. Data from two tactile sensor array sensors mounted on 
a gripper performing a palpation procedure is classified as belonging to 10 objects by Drimus et al. 
[4], using a combination of a k-neighbors classifier and dynamic time warping. Liu et al. [5], classify 
empty and full bottles based on tactile data recuperated by tactile arrays placed on each of the three 
fingers of a robot hand making use of joint kernel sparse coding. To recognize a series of 18 objects 
in a fixed or movable position, Bhattacharjee et al. [6], extract various features from tactile sensor 
array data (i.e. maximum force over time, contact area over time and contact motion) that are 
subsequently classified by a k-nearest neighbor classifier. The authors of [7] exploit a different series 
of tactile features (i.e. positions and distances of the center of mass of the tactile image blob, pressure 
values, stochastic moments, the power spectrum and the raw, unprocessed windows centered at the 
points with the highest contact force) to identify objects using decision trees. The current paper aims 
at collecting tactile information using a force-resistive tactile sensor array only on relevant areas, 
represented by points of interest, over the surface of 3D objects in order to identify them.  

3. Visual Attention Model for Guiding Tactile Data Acquisition for Object Recognition 

The proposed solution for guiding data acquisition starts with a visual inspection of the object 
of interest. A 3D model of the object of interest can be obtained using a RGB-D sensor (Kinect), and a 
software (Skanect), that allows stitching data collected from multiple views in a unified 3D model. 
Texture information, as recuperated by the color camera of the Kinect can then be added on the object 
surface to fully exploit the capabilities of the computational model of visual attention. The latter uses 
geometrical information (i.e. orientation of edges, curvature) and also color properties (i.e. color 
opponency, contrast) to identify the areas of interest that guide the deployment of attention. A novel, 
enhanced visual attention model and a method to extract interest points based on this model are 
proposed for this purpose. Taking inspiration from the human joint use of vision and tactile 
information for object manipulation tasks, we propose the use of these interest points for the 
acquisition of local tactile data (tactile imprints as collected by a force-resistive tactile sensor array). 
Because the acquisition of tactile data requires a direct contact with the object, the process to move 
and position the sensor can be extremely lengthy. We therefore use in an initial step a simulation that 
allows us to identify the best acquisition location and subsequently the best classifier to employ for 
recognizing the probed object based on the acquired tactile data. The method is then validated on 
real data collected using a force-sensitive tactile sensor array over a series of toy objects.   

3.1. 3D Visual Attention Model for Interest Point Identification 

In order to identify interest points over the surface of a 3D object, we have proposed an improved 
version of the classical visual attention system proposed by Itti [8]. The algorithm explores color, 
intensity, orientation, as the Itti model, but also capitalizes on the use of symmetry, curvature, DKL 
color space, contrast, and entropy to compute the level of saliency for different regions over the object 
model surface. All these features are known to guide the deployment of visual attention. As the visual 
attention model is only applicable on images, we used the virtual camera of Matlab to capture images 
from different viewpoints around the object. A saliency map is produced for each image based on the 
previously reported features, in which the interest regions are represented by bright areas on a black 
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background (the brighter the area is, the more salient it is). Based on this map, the interest points are 
determined in 2D pixel coordinates and projected back as 3D vertices on the object surface. Figure 1a 
summarizes the improved visual attention approach for interest point selection. In particular, 18 sets 
of viewpoints each containing 4 perpendicular viewpoints (to cover the whole surface of the object) 
are chosen to collect the images. For these, a series of conspicuity maps is created, eight for each image 
(one for each considered feature).  

 

(a) (b) 

Figure 1. (a) Improved visual attention for interest point selection; (b) 2D to 3D projection. 

The classical visual attention model [8] decomposes color, intensity and orientation modalities 
of captured images into a set of multiscale feature maps over which local spatial discontinuities are 
computed as center-surround differences. Further studies have proven that other features, including 
symmetry, curvature, DKL color space, contrast, entropy can also influence visual attention 
deployment. In this work, we have capitalized on all these features to compute an improved visual 
attention model. The bilateral and radial symmetric point detection algorithm introduced in [9] is 
used to determine the symmetry conspicuity map. Subsequently the center-surround operations are 
applied on the resulting map. Curvature information is extracted using the saliency map proposed 
in [10]. The color opposition model based on Derrington-Krauskopf-Lennie (DKL) color space [11] is 
added to provide another color feature, closer to human visual capacities. The local entropy 
calculation is based on a 9 × 9 neighbourhood of the median filtered input image and yields the 
entropy conspicuity map. The luminance variance in a local neighborhood of 80 × 80 pixels as 
proposed in [12] is adopted to create the contrast conspicuity map. Finally, the eight conspicuity maps 
contribute with equal weights to produce a comprehensive saliency map for each image.  

Once the saliency map is obtained for all images, the salient regions detected outside of the 
surface of the object are removed. Such regions can sometimes occur around the outer surface of the 
object due to the local contrast, intensity and color changes between the object and its background. 
The most salient set of viewpoints is then chosen as the set with the highest average level of saliency. 
The level of saliency is computed as the normalized accumulation of pixel values for the saliency 
maps. Interest points are then identified as the brightest points on the saliency maps for best set of 
viewpoints. Figure 1b illustrates the projection geometry of an arbitrary interest point from image 
pixel coordinates (ݔ௣	and ݕ௣) to the object surface. These values can be found in real world coordinate 
as ݔ = ௫೛௉௉ௐ௎ and ݕ = ௬೛௉௉ௐ௎, where PPWU is the number of pixels per world units, calculated as ܹܷܲܲ = 	 ே௨௠௕௘௥	௢௙	௥௢௪௦	௢௙	௧௛௘	௜௠௔௚௘	ଶ×ௗ×௧௔௡మഀ . In this formula, α	is the camera view angle and d represents the 

distance from camera center to the origin. Knowing the spherical coordinate of the camera 
center	(݀, ,݈ܧ  where El and AZ are the elevation and azimuth angles of camera center position ,(ܼܣ
respectively, the spherical coordinate of the interest point (the red dot in Figure 1b) can be calculated 
as (݀,, ݈ܧ ± ߮, ݖܣ ± (ߠ  where, ݀ᇱ = ඥݔଶ + ଶݕ + ݀ଶ  , ߶ = ଵି݊ܽݐ ௬ௗ  and ߠ = ଵି݊ܽݐ ௫ௗ . The positive or 
negative signs of ߠ and ߮ depend on the quadrant on the image plane to which the interest point 
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belongs to. The ray starting from the real world coordinate of the interest point on image plane in 
perpendicular direction to the image plane (in parallel with the vector from camera center to the 
origin) [13] intersects the corresponding point on object surface (yellow dot - Figure 1b).  

The interest points on object surface are then sorted in descending order according to their level 
of saliency. The level of saliency is first determined as the number of times the point or its neighbors 
are identified as salient from different viewpoints and then by their corresponding pixel values in the 
saliency map. A series of 15 interest points with highest saliency are then selected for each object to 
guide the tactile data acquisition process.  

3.2. Tactile Data Acquisition Simulation 

Once the interest points are identified over the surface of an object, the data acquisition process 
is simulated over the detected points. In particular, the sensor surface is estimated as a series of quasi-
tangent planes to the surface of the object at the identified interest point.  

  

(a) (b) (c) 

Figure 2. Tactile data acquisition simulation: (a) 3D object in contact with the 4 quasi-tangent planes 
(b) the first plane computation and (c) resulting local contours (up) and their projection to create a 
tactile imprint image (down); and (d) series of tactile imprints obtained for the object.  

A series of four such planes are used (Figure 2a), situated close to each other in order to simulate 
the depth of the real sensor. The use of quasi-tangent planes is justified by the fact that research 
demonstrated that orienting the sensor along the local normal on the surface of the object maximizes 
the content and quality of acquired tactile data. To compute the first tangent plane (Figure 2b), we 
first identify the three closest neighbors (P1 to P3) to the identified interest point (Pi) over the object 
mesh and build a plane passing through them. The local intersection contour is then estimated 
between this plane and the 3D object surface. Three other equidistant planes are built along the local 
normal on the surface. The normal is computed as being the orthogonal vector on the first plane and 
it becomes the translation axis along which other three equidistant planes are placed. For each of 
them, the local intersection contours are identified with the 3D object. The contour information is 
then projected onto a plane where the gray level encodes the depth information. The procedure is 
repeated for each of the 15 interest points detected in section 3.1. An example of tactile data acquired 
for the cup is shown in Figure 2c. Because the resulting tactile images are simulated, they have a 
higher resolution than the ones obtained with the real sensor. They have therefore been down-
sampled to 16-by-16, to better correspond with the capabilities of the real sensor. The corresponding 
16-by-16 values are concatenated to create vectors that become inputs to a classifier.  

3.3. Tactile Data Classification for Object Recognition 

A series of classifiers, namely deep learning neural networks, Naïve Bayes, decision trees, 
evolutionary support vector machines (SVM) and k-nearest neighbors are then tested for the 
classification of objects based on the vectors encoding the tactile images. Because during 
experimentation we have realized that certain imprints are strongly resembling from one object to 
another (the ear of the dromedary and the ear of the cow), we proposed a selection of tactile imprints 
to be used for training the classifiers based on similarity. In particular, we have computed the 
similarity between the pairs of imprints of two objects at the time, as the normalized cross-correlation 
of the down-sampled 16-by-16 matrices. We have then eliminated all those imprints with a similarity 
larger than 0.85 (equivalent to similarities larger than 85%). The results obtained over simulated data 
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are then validated using real data collected over the interest points using a force-resistive tactile 
sensor array [14]. 

4. Experimental Results 

We have performed experiments using the proposed framework for a series of four toy objects: 
cow, glasses, cup and hand; and then with a series of six object toys, namely cow, glasses, cup, hand, 
plane and dromedary, both for simulated and real data.  

Table 1. Object recognition rate with and without tactile imprints selection for simulated data. 

 No selection
4 objects 

Selection
4 objects 

No selection
6 objects 

Selection  
6 objects 

Deep learning 58.61% 79.95% 54.95% 56.13% 
Naïve Bayes 31.81% 71.25% 40.66% 75.18% 
Decision tree 43.61% 60.25% 35.16% 56.00% 
Evolutionary SVM 71.53% 81.82% 61.54% 73.69% 
k-nearest neighbors 71.94% 87.89% 62.64% 75.82% 

Table 1 displays the performance in the case in which simulated tactile imprints are used for the 
task of object recognition. The best recognition rates are achieved by the k-nearest neighbors 
classifier, followed by the evolutionary SVM classifier, with a maximum difference between them of 
6.07%. The results are better when comparing the case when all the tactile imprints are used and 
when tactile imprints are selected for training based on similarity. An improvement of 15.95% is 
obtained using the selection process of imprints for the 4 objects and of 13.18% for the 6 objects. The 
best performance achieved is of 87.89% for 4 objects and of 75.82% for 6 objects.  

The results for the real data collected over the same objects are displayed in Table 2. 

Table 2. Object recognition rate with and without tactile imprints selection for real data. 

 No selection
4 objects 

Selection
4 objects 

No selection
6 objects 

Selection  
6 objects 

Deep learning 52.12% 59.14% 47.10% 55.13% 
Naïve Bayes 50.24% 58.10% 27.54% 55.67% 
Decision tree 53.17% 60.14% 22.46% 58.16% 
Evolutionary SVM 61.54% 72.14% 57.25% 68.25% 
k-nearest neighbors 67.23% 72.25% 57.97% 70.47% 

One can notice that the best performance in terms of recognition rates is obtained using the k-
nearest-neighbors algorithm, again followed in the second position by the evolutionary SVM, similar 
to the observation made for the simulated data. As well, it can be observed that the performance is 
better when using the tactile imprints selection based on similarity, both for four objects (72.25% 
versus 67.23%) and six objects (70.47% versus 57.97%). Due to the low results obtained both for 
simulated and real data, the Naïve Bayes and decision tree techniques are not appropriate for the task 
of object recognition based on tactile data. By comparing the best performance obtained on real and 
simulated results, one can notice that the first is slightly lower (max. by 15.64%). This is expected, 
because the real data is noisier and of very lower resolution. 

5. Conclusion 

In this paper we have studied the problem of object recognition based on tactile data whose 
acquisition is guided by an improved computational model of visual attention. The latter takes into 
consideration, beyond the classical features such as orientation, color and intensity, information 
about symmetry, curvature, contrast, and entropy to identify over the surface of a 3D object a series 
of interest points. It was demonstrated that tactile data collected at these points using a force-resistive 
tactile sensor can be successfully employed to classify 3D objects using the k-nearest neighbors 
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algorithm. When using the similarity measure to select the imprints for training the classifier, the 
recognition rate is of 87.89% for 4 objects and 75.82% for 6 objects for simulated data, while for real 
tactile sensor data is of 72.25% for 4 objects and 70.47% for 6 objects. 
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