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Abstract: Monitoring of mechanical structures is a Big Data challenge and includes Structural 
Health Monitoring (SHM) and Non-destructive Testing (NDT). The sensor data produced by 
common measuring techniques, e.g., guided wave propagation analysis, is characterized by a high 
dimensionality in the temporal and spatial domain. There are off- and on-line methods applied at 
maintenance- or run-time, respectively. On-line methods (SHM) usually are constrained by low-
resource processing platforms, sensor noise, unreliability, and real-time operation requiring 
advanced and efficient sensor data processing. Commonly, structural monitoring is a task that maps 
high-dimensional input data on low-dimensional output data (information, which is feature 
extraction), e.g., in the simplest case a Boolean output variable “Damaged”. Machine Learning (ML), 
e.g., supervised learning, can be used to derive such a mapping function. But ML quality and 
performance depends strongly on the input data size. Therefore, adaptive and reliable input data 
reduction (that is feature selection) is required at the first layer of an automatic structural monitoring 
system. Assuming some kind of two-dimensional sensor data (or n-dimensional data in general), 
image segmentation can be used to identify Regions of Interest (ROI), e.g., of wave propagation 
fields. Wave propagation in materials underlie reflections that must be distinguished, especially in 
hybrid materials (e.g., combining metal and fibre-plastic composites) there are complex wave 
propagation fields.  The image segmentation is one of the most crucial part of image processing. 
Major difficulties in image segmentation are noise and the differing homogeneity (fuzziness and 
signal gradients) of regions, complicating the definition of suitable threshold conditions for the edge 
detection or region splitting/clustering. Many traditional image segmentation algorithms are 
constrained by this issue. Artificial Intelligence can aid to overcome this limitation by using 
autonomous agents as an adaptive and self-organizing software architecture, presented in this 
work. Using a collection of co-operating agents decomposes a large and complex problem in smaller 
and simpler problems with a Divide-and-Conquer approach. Related to the image segmentation 
scenario, agents are working mostly autonomous (de-coupled) on dynamically bounded data from 
different regions of a signal or an image (i.e., distributed with simulated mobility), adapted to the 
locality, being reliable and less sensitive to noisy sensor data. In this work, self-organizing agents 
perfom segmentation.  They are evaluated with measured high-dimensional data from piezo-
electric acusto-ultrasonic sensors recording the wave propagation in plate-like structures. 
Commonly, SHM deploys only a small set of sensors and actuators at static positions delivering 
only a few temporal resolved sensor signals (1D), whereas NDT methods additionally can use 
spatial scanning to create images of wave signals (2D). Both one-dimensional temporal and two-
dimensional spatial segmentation are considered to find characteristic ROI. 
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1. Introduction 

Monitoring of mechanical structures is a Big Data challenge that addresses Structural Health 
Monitoring (SHM) as well as Non-destructive Testing (NDT) methods. Trends poses the integration 
of sensor networks towards the design of self-aware structures, increasing the sensor density 
significantly and increasing the complexity of applications [1][2]. The sensor data produced by 
common measuring techniques, e.g., guided wave propagation analysis, is characterized by a high 
dimensionality of data in the temporal and spatial domain. There are off- and on-line methods 
applied at maintenance- or run-time, respectively. On-line methods (SHM) usually are constrained 
by low-resource processing platforms, sensor noise, unreliability, and real-time operation requiring 
advanced and efficient sensor data processing [6]. Commonly, structural monitoring is a task that 
maps high-dimensional input data on low-dimensional output data (information, that is feature 
extraction), e.g., in the simplest case a Boolean output variable “Damaged”. Machine Learning (ML), 
e.g., supervised learning, can be used to derive such a mapping function, and reinforcement learning 
or unsupervised learning (clustering) can be used to improve information extraction. Numerical 
analysis of measuring data as well as ML quality and performance depends strongly on the input 
data size and feature variable selection (quality). Therefore, adaptive and reliable input data 
reduction (that is feature selection) is required on the first layer of an automatic structural monitoring 
system (regardless if it applied at run- or maintenance time).  

Assuming some kind of one- or two-dimensional sensor data (or n-dimensional data in general), 
image segmentation can be used to identify Regions of Interest (ROI), e.g., of wave propagation 
signals and fields. A ROI is characterized by its relevance for further data processing, and can be 
recognized by specific patterns or by heuristic knowledge (e.g., the third wave of a recorded 
ultrasonic signal delivers information about a damage that is demonstrated in the experimental 
section). Wave propagation in materials underlie reflections that must be distinguished, especially in 
hybrid materials (e.g., combining metal and fibre-plastic composites) there are complex wave 
propagation fields.  The image segmentation is one of the most crucial part of image processing [4]. 
Commonly used approaches are edge detection by finding abrupt changes in the signal field suffering 
from a high sensitivity to noise and inhomogenities [3]. 

General difficulties in image segmentation are noise and the differing homogeneity (fuzziness 
and signal gradients) of regions, complicating the definition of suitable threshold conditions for the 
edge detection or region splitting/clustering. Many traditional image segmentation algorithms are 
constrained by this issue. Artificial Intelligence can aid to overcome this limitation by using 
autonomous agents as an adaptive and self-organizing software architecture, presented in this work. 
Using a collection of co-operating agents decomposes a large and complex problem in smaller and 
simpler problems with a Divide-and-Conquer approach. Related to the image segmentation scenario, 
agents are working mostly autonomous (de-coupled) on dynamic bounded data from different 
regions of an image (i.e., distributed with simulated mobility), adapted to the locality, being reliable 
and less sensitive to noisy sensor data. Agent-based approaches can be used to enhance classical 
edge-based approaches, e.g., applying edge regularization using Bayesian methods [3]. A review of 
agent-based image segmentation approaches can be found in [4]. Applying artificial intelligence 
approaches using autonomous agents and data marking to edge detection, clustering, and region 
growing was introduced in [7], featuring reduced computational costs and a wide application field 
(due to its self-adaptation feature).  Random behaviour can aid finding regions and clusters more 
accurately, efficiently, and faster [5]. This technique is applied in this work to (virtual) agent 
migration decisions.  
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In this work, a simple but powerful agent-based segmentation approache is introduced and 
evaluated with measured high-dimensional data from piezo-electric acusto-ultrasonic sensors that 
recorded stimulated wave propagation in plate-like structures. Commonly, SHM deploys only a 
small set of sensors and actuators at static positions delivering only a few spatially resolved sensor 
signals (1D), but with high temporal resolution, whereas NDT methods additionally can use spatial 
scanning to create images of wave signals (2D). Both one-dimensional temporal and two-dimensional 
spatial segmentation is considered to find characteristic ROIs automatically. 

2. Non-destructive Test (NDT) of Structures 

The two-dimensional recording of the wave propagation and interaction of guided waves can 
be performed by using laser vibrometry [9], [10] or an airborne ultrasonic testing technique [11]. In 
order to be able to excite guided waves, an actuator, usually made of piezo-ceramic materials, must 
be applied to the structure. By adjusting the geometry of the actuator [11] or its electrode 
configuration [8], the amplitudes of individual modes can be amplified or attenuated to emphasize 
specific wave interaction. The identification of damages is made by wave interactions, such as 
reflection, scattering, mode conversion and wave number changes, in wave propagation.  

At delaminations or thicknesses these wave interactions can be determined using wave number 
spectroscopy (2D-FFT of the wave propagation) [13]. However, these methods require a locally 
resolved scan of the wave propagation, producing wave propagation images with only a few regions 
of interest. The entire measuring setup and the synopsis with this work performing feature selection 
and extraction is shown in Figure 1. 

 

Figure 1. Automated, model-free damage detection with guided ultrasonic waves and 2D scanning. 

A locally resolved segmentation and clustering of sensors and their sensory data as a precursor 
of SHM and ML methods have so far only been inadequately addressed, but it is an important sensor 
fusion and feature selection instrument. Here we analyze the wave propagation and interaction using 
air-ultrasound technology and identify features to the damage interaction of different modes in the 
time and wave number domain. 

3. Image and Signal Segmentation 

Image segmentation is a method to divide an image in different regions (clusters) to identify 
regions of interest, i.e., isolating regions for further processing (feature extraction). In a signal 
processing system this is the first important feature variable selection (considering each pixel of an 
image as variable), e.g., using this reduced variable set as an input vector for Machine Learning. In 
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this work, one-dimensional vectors retrieved from time-resolved ultrasonic wave measurement are 
used for segmentation tasks. The goal is to detect the relevant signal region used for further damage 
detection and analysis. 

4. The Multi-Agent System with Self-organization and Adaptation 

The Multi-agent System (MAS) consists of simple agents with different behaviour. The signal 
segmentation algorithm bases on an event-based divide-and-conquer approach, shown in Figure 2. 
Details of the underlying agent behaviour and programming model can be found in .The time-
resolved signal vector x(t) is reduced to a segment vector s(n) by using a data filter algorithm (peak, 
or arithmetic mean, or exponential mean). Each data segment is handled by a segment agent, 
instantiated by a master agent. A segment agent can create explorer agents to investigate the segment 
neighbourhood within a given radius. Agents communicate with each other by using signals 
(lightweight messages). The segment and explorer agents perform the feature variable selection, and 
the master agent finally performs the feature information extraction delivering ROIs of the signal 
input vector. 

The summary of the behaviour of the different agents is listed below: 

• Master Agent 

• The master agent controls the divide-and-conquer process and instantiates segment agents 
(one for each signal data segment). The master agent transforms the input signal vector to 
a segment vector of fixed length. Each time a new data set is loaded, the segment agents 
are notified by sending a LOAD signal.  

• The master agent collect all markings from marked data cells and computes ROIs (by using 
its gap and roiXX parameters, see below). 

• Segment Worker Agent 

• Each segment agent is responsible for one data cell and performs a check for an data event 
if it got a LOAD signal, that means, if there is a significant change in its associated cell data 
value. If an event was detected, an initial explorer agent is created. An explorer agent is 
created with a specific set of parameters, which can be adapted by the master agent and 
the segment agent. The segment agent communicates with its explorer child agents and 
with its master agent via signals. 

• Explorer Agent 

• The explorer agent has the goal to collect data from the current left and right side 
neighbourhood within a given radius. The neighbourhood data values are compared with 
the current associated data value (difference |s(i±δ)-s(i)| with δ={-r,..,-1,1,..,r}), and 
differences lying within a given interval Δ are counted.  If the counter lies within another 
given interval {ηmin,..,ηmax}, the explorer marks the cell and reproduces itself. The clone 
migrates virtually to another neighbour cell (left or right side). If the counter values is 
outside of the interval, it migrates (virtually) to another neighbour cell, performing the 
exploration again. If random walk is enabled, the diffusion and reproduction direction are 
chosen randomly, otherwise always one more agent is instantiated on diffusion (opposite 
direction) and two agents are reproduced (moving in opposite directions).  
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Figure 2. The MAS: Perception; Event-based instantiation of explorer agents; Diffusion and 
Reproduction; Communication via signals. 

The explorer agent parameter set consists of the following variables: {i, Δ, ηmin, ηmax, r, lifetime τ, 
decay δ, randomwalk ρ}. The segment agent is parameterized by: {thresholdζ}. The master agent is 
parameterized by the set: {gap, roiMin, roiMax, roiWeightMin, roiWeightMax}. A signal segmentation 
and ROI feature extraction delivers the following output variables (delivered by the master agent) 
enabling the calculation of a quality measure of the extraction: {agentsTotal, markings, roi, roiWeight}. 

Initially there is a pre-defined set of parameters that must be adapted to different signal 
properties (i.e., sensitivity, noise, signal shape). This is performed by the master agent controlling its 
worker agents by updating parameter sets via signals (BEHAVIOUR signals). 

5. Experimental Ultrasonic Measurement 

The experimental setup for guided-wave propagation consists of a digital oscilloscope Tektronix 
DPO 5054 and an arbitrary signal generator Hewlett Packard HP 33120A connected to a wideband 
amplifier Falco Systems WMA-300. The input signal is a Hann-windowed 200 kHz sinusoidal burst 
of three counts. 

Figure 3 shows the principle experimental setup delivering the signal vectors used by the MAS 
and analyzed in Sec. 6.. 512 values of the sensor responses with a time resolution of 8 ns are averaged 
for the signal vectors. The device under test (DUT) is a hybrid structure consisting of a metal 
(aluminum) plate and a quasi-isotropic carbon fiber reinforced plastic (CFRP) composite plate. Each 
plate has a thickness of 4 mm and overall dimensions of 300 mm x 300 mm. 

The plates are butt-coupled and an ultrasonic couplant gel is between the coupling edges of the 
plates. In this way the acoustic interface between the plates is realized by the ultrasonic couplant gel. 

Along the vertical axis (side 1 - side 3) ultrasonic round piezoelectric wafer active sensors 
(PWAS) with a thickness of 0.2 mm and a diameter of 10 mm are placed at different positions A–F. 
The distance between the positions C and D is 150 mm. The distance between the positions C and B 
is 100 mm. The PWAS are bonded on the plate surface with Z70 cyanoacrylate adhesive. The 
piezoelectric material of the PWAS is the ceramic lead zirconate titanate (PZT) PIC255 from PI 
Ceramic GmbH with the notation PRYY+0412. 

In the measurements the PWAS at position C is used as actuator (and for some experiments at 
position D). As sensor for the reflected ultrasonic signal at the interface the PWAS at position B is 
used. As sensor for the transmitted ultrasonic signal through the interface the PWAS at position D is 
used. In order to simulate and create definite damages in the interface the ultrasonic couplant gel is 
removed over definite lengths and positions.  
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Figure 3. Experimental setup and placement of PWAS; in this case the transmitted signal from 
position C to position D is measured. 

6. Simulation and Analysis 

The sensor data recorded in the experiments from Sec. 5. was used to simulate and evaluate the 
MAS using the JavaScript Agent Machine (JAM) platform (details can be found in [14]).  

Some example results of ROI marking using the MAS are shown in Figure 5. Experiments are 
made with different DUT configurations: (105) Aluminum only without coupling layer; (108) Hybrid 
structure C; (110) Hybrid structure D, summarized in Table 2. Furthermore, different MAS parameter 
sets were investigated. The plots in Figure 5 show the parameter set, the quality of measure variables, 
the marker plot with respect to the segment, the original down-sampled input data and the segment 
agents, and finally the temporal development of the agent population. Using random walk behaviour 
results in the lowest number of required (and created) agents on the order of a decade compared with 
the non-random walk behaviour (compare plot (a) and (b). Plots (a) and (b) show the original actor 
excitation signal. Plots (c) - (d) show measured sensor signals containing the relevant first wave group 
and a indefinite number of delayed signals not used for the damage detection. 

The agents were able in all cases to find the relevant main ROI, requiring typically less than 40 
explorer agents. The master agent observes the number of created agents (agentsTotal), the number of 
found ROIs (defined by the markers set by the explorer agents and a gap parameter), and the ROI 
weight (i.e., the mean width of the ROIs) to compute a quality measure of the self-organizing ROI 
detection. The higher the number of created explorer agents is, the higher is the number of markings 
(under the assumption there is the condition satisfied required to detect a region boundary).  

The quality Q of the ROI detection computed by the master agent is given by Eq. 1. 

 
(1) 

with #roi as the number of detected ROIs (must be one), roiw as the ROI weight (width, i.e., roi1-roi0), 
roi0 and roi1 are the start and end time of the detected ROI, and c0 is the expected center position of 
the ROI (based on export knowledge), and k is an error weight factor in the range k=[5,50]. The last 
term |roi0+roi1|/2-c0 is only used for the evaluation of these ROI detection approach in this work, but 
not used for the on-line quality estimation at run-time (the expected center point of the ROI c0 is 
unknown). 

The first evaluation was performed with signals having a high signal-to-noise ratio (Top of 
Figure 4). The parameter sets and the signal data set descriptions can be found in Tables 1 and 2. The 
DUT was the aforementionedAluminum-Composite hybrid structure with an additional gap 
between the material boundaries. The parameter sets P0 and P1 differ only in their random walk 
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behaviour setting (P0: disabled, replication on successful and not successful marking, P1: enabled, 
replication only on successful marking). The random walk behaviour requires about 20 times fewer 
agents, but with comparable quality of the ROI detection in all evaluated data sets! Commonly only 
about 20 agents are required for a high-quality detection. The choice of appropriate parameter sets 
with signals having a high signal-to-noise ratio is uncritical. Only P5 is not suitable for the ROI 
detection of any of the signals due to its low delta Δ and threshold ζ values. The settings of these 
parameters depend on the overall signal strength and noise. 

The second evaluation (Bottom of Figure 4) uses signals with a low signal-to-noise ratio making 
the ROI feature selection more difficult and unreliable. Here is the choice of an appropriate parameter 
set crucial and parameter values must be chosen from narrow ranges for a specific signal. Only P8 
delivers convincible results with all signals except the last one, and P7 for some of the signals. All 
other parameter settings fail (P0-P5 are not able to trigger the exploration), either without any 
markings (Q=0) or with failed markings (Q<0). As more as the parameter set is unmatched to the 
signal as higher is the agent creation rate, though this primarily correlates with the delta Δ and 
threshold ζ parameter values. 

 

Figure 4. Analysis results showing quality Q (left) and agent population plots (right) of the ROI 
detection with different signal data sets F={1,2,3,4,5,6,7}, Sensor-Actuator configurations CB/CD,  
and parameter settings P={0,1,2,3,4,5}/{6,7,8,9,10} (different color bars). (Top) Actuatorpos. C (except 
F6: D), Sensorpos. B (except F6: E), error weight k=10 (Bottom) Actuatorpos. C (except F6: D), 
Sensorpos. D (except F6: C), error weight k=20. 
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Figure 5. Some selected results of ROI marking using the Self-organizing MAS: (a,b) Actor signal (c,d) 
Sensor signal; (a) Without random walk (b,c,d) With random walk behaviour (a,b) Experiment 105, 
(c) 110 (d) 108; all fsample=150KHz. 
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Table 1. Parameter sets. 

P Δ ηmin ηmax r τ δ ρ ζ w0 

0 0.005 2 4 3 6 10 false 0.005 5 
1 0.005 2 4 3 6 10 true 0.005 5 
2 0.005 1 5 3 6 10 true 0.005 5 
3 0.005 2 4 5 6 10 true 0.005 5 
4 0.005 2 4 3 6 10 true 0.005 5 
5 0.002 2 4 3 6 10 true 0.002 5 
6 0.001 2 4 3 6 10 true 0.001 8 
7 0.0005 2 4 3 6 10 true 0.0005 8 
8 0.0002 2 4 3 6 10 true 0.0002 8 
9 0.0001 2 4 3 6 10 true 0.0001 8 

10 0.00005 2 4 3 6 10 true 0.00005 8 

Table 2. Signal data sets and analysis setup. 

F Probe fsample Sensor Pos. Actuator Pos. 

0 Hybrid Alu.-Comp., no gap 200.1 kHz B/D C 
1 Hybrid, gap width 50mm 200.1 kHz B/D C 
2 Hybrid, gap width 40mm 200.1 kHz B/D C 
3 Hybrid, gap width 30mm 200.1 kHz B/D C 
4 Hybrid, gap width 25mm 200.1 kHz B/D C 
5 Hybrid, gap width 15mm 200.1 kHz E/C D 
6 Hybrid, gap width 15mm 200.1 kHz B/D C 

7. Conclusion 

A self-organizing agent-based approach was used successfully to detect relevant regions in 
measured ultrasonic wave sensor signals performing a feature selection. The bounded regions are used 
for further processing in damage detection (feature extraction). The MAS operates event-based and 
divides the input data vector in segments and is populated with agents operating regionally but 
cooperating to satisfy a global goal (the feature selection generating ROI markers). The self-organizing 
and parameterizable behaviour capabilities ensure robust feature extraction. The transfer of the 
demonstrated feature extraction for one-dimensional signals to spatially distributed sensor images is 
straightforward. In future work, the parameter sets must be adapted automatically based on prior 
knowledge, pre-signal analysis, and a hybrid approach consisting of supervised and reinforcement 
learning (using the quality Q and the triggered exploration and marking rates of a ROI detection).  
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