## ENERGY EFFICIENCY ANALYSIS OF WHEAT CROP GROWN ON PERMANENT RAISED BED UNDER DIFFERENT CLIMATE AND SOIL BASED SCENARIOS

## Rubina Ansari<sup>1\*</sup>, Usman Liaqat<sup>1</sup>, Hafiz Ihsan Khan<sup>2</sup>, Sumra Mushtaq<sup>1</sup>

<sup>1</sup>Department of Irrigation and Drainage, University of Agriculture, Faisalabad, Pakistan. <sup>2</sup>Department of Structure and Environmental Engineering, University of Agriculture, Faisalabad, Pakistan.



2nd International Electronic Conference on Water Sciences (ECWS-2), 16-30 November 2017

# **Introduction/Problem Statement**

Increasing demand for food, fiber and fodder will put great strains on land, water, energy and other resources.

✤ Developing countries face a difficult challenge in meeting the growing demands for food, water, and energy, which is further compounded by climate change.

✤ Pakistan is a water and energy scare country and both are important in agricultural production.

✤ Agriculture is considered as backbone in economy of Pakistan, contributing 21% to its GDP, nearly 43.7% of its work force and providing livelihood to more than 67% of its population.

The water and energy conservation plans are directly related to the poverty reduction and raise livelihood.

Effective application of agricultural techniques and efficient use of support inputs can minimize environmental problems and in consequence promote sustainable agricultural intensification.



#### AREAS OF PHYSICAL AND ECONOMIC WATER SCARCITY

#### Physical water scarcity

water resources development is approaching or has exceeded sustainable limits). More than 75% of the river flows are withdrawn for agriculture, industry, and domestic purposes (accounting for recycling of return flows). This definition—relating water availability to water demand—implies that dry areas are not necessarily water scarce. Approaching physical water scarcity. More than 60% of river

flows are withdrawn. These basins will experience physical water scarcity in the near future.

#### Economic water scarcity

(human, institutional, and financial capital limit access to water even though water in nature is available locally to meet human demands). Water resources are abundant relative to water use, with less than 25% of water from rivers withdrawn for human purposes, but malnutrition exists.

#### Little or no water scarcity. Abundant water resources relative to use, with less than 25% of water from rivers withdrawn for human purposes.



## As population grows, pressures mount

### And the relationships between food, water, and energy supplies become critical

Because of growth in global population and the consumption patterns of an expanding middle class, in less than two decades three key demands will sharply increase ...



# **Background of Study& Objectives**

Energy utilization and output differs among crops, production systems and intensity of management practices.

Considerable research has been conducted on energy use pattern of field crops under different management practices in the world.

✤ Very little efforts have been made to explore the relationship among water, energy and the yield in Pakistan.

## **Objectives:**

To investigate the consumption pattern with regard to energy and water in wheat production under different irrigation schedules.

✤ To evaluate the differences in different energy and water indices for all irrigation schedules.



# **Study Area**

The field experiment was conduct at the Water Management Research Centre (WMRC), Jhang road Faisalabad, on wheat crop for rabi 2014-15

Latitude: 31.38715N, Longitude: 73.01089E Altitude: 176 m



## **Treatment description & Energy Equivalents**



|                      | · · · · · · · · · · · · · · · · · · · | i                                               |            |
|----------------------|---------------------------------------|-------------------------------------------------|------------|
| Energy               | unit                                  | Energy<br>Equivalent<br>(MJunit <sup>-1</sup> ) | References |
| Inputs               |                                       |                                                 |            |
| Human Labor          | h                                     | 1.96                                            | [13]       |
| Machinery            | h                                     | 62.7                                            | [13]       |
| Diesel Fuel          | L                                     | 56.31                                           | [13]       |
| Chemical Fertilizers | kg                                    |                                                 |            |
| a) Nitrogen          |                                       | 66.14                                           | [13]       |
| b) Phosphorous       |                                       | 12.44                                           | [13]       |
| c) Potassium         |                                       | 11.15                                           | [13]       |
| Herbicides           | kg                                    | 238                                             | [14]       |
| Water                | m <sup>3</sup>                        | 1.02                                            | [13]       |
| Electricity          | kWh                                   | 11.93                                           | [15]       |
| Seeds                | kg                                    | 14.7                                            | [16]       |
| Outputs              |                                       | •                                               |            |
| Wheat Grain Yield    | kg                                    | 14.7                                            | [16]       |
| Wheat Straw Yield    | kg                                    | 12.5                                            | [16]       |



# **Field Layout**

Experimental Design: CRD Total no. of plots: 18 Total experimental area = 71.0 m x 16.5 m Plot size = 71.0 m x 0.91 m























**Results** 



Graphical representation of Grain yield and Biological yield in relation to water used

### Quantity of inputs and outputs per unit hectare in wheat production

|                      |                | Energy                                | Quantity per unit hectare |           |           |           |           |        |           |  |
|----------------------|----------------|---------------------------------------|---------------------------|-----------|-----------|-----------|-----------|--------|-----------|--|
| Energy               | unit           | Equivalent<br>(MJunit <sup>-1</sup> ) | Farmer                    | <b>T1</b> | <b>T2</b> | <b>T3</b> | <b>T4</b> | Т5     | <b>T6</b> |  |
| INPUTS               |                |                                       |                           |           |           |           |           |        |           |  |
| Human Labor          | h              | 1.96                                  | 85                        | 85        | 85        | 85        | 85        | 85     | 85        |  |
| Machinery            | h              | 62.7                                  | 20                        | 20        | 20        | 20        | 20        | 20     | 20        |  |
| Diesel Fuel          | L              | 56.31                                 | 50                        | 50        | 50        | 50        | 50        | 50     | 50        |  |
| Chemical Fertilizers |                |                                       |                           |           |           |           |           |        |           |  |
| a) Nitrogen          | kg             | 66.14                                 | 104                       | 104       | 104       | 104       | 104       | 104    | 104       |  |
| b) Phosphorous       |                | 12.44                                 | 212                       | 212       | 212       | 212       | 212       | 212    | 212       |  |
| c) Potassium         |                | 11.15                                 | 129                       | 129       | 129       | 129       | 129       | 129    | 129       |  |
| Herbicides           | kg             | 238                                   | 1.5                       | 1.5       | 1.5       | 1.5       | 1.5       | 1.5    | 1.5       |  |
| Water                | m <sup>3</sup> | 1.02                                  | 3500                      | 2320      | 2270      | 2120      | 2250      | 2150   | 2250      |  |
| Electricity          | kWh            | 11.93                                 | 618.136                   | 409.712   | 400.882   | 374.392   | 397.35    | 379.69 | 397.35    |  |
| Seeds                | kg             | 14.7                                  | 125                       | 125       | 125       | 125       | 125       | 125    | 125       |  |
| OUTPUTS              |                |                                       |                           |           |           |           |           |        |           |  |
| Wheat Grain Yield    | kg             | 14.7                                  | 3400                      | 4350      | 4240      | 3940      | 4030      | 3670   | 3320      |  |
| Wheat Straw Yield    | kg             | 9.25                                  | 12010                     | 12500     | 12280     | 12050     | 12120     | 11810  | 11550     |  |

### **Energy Consumption and Production in wheat production**

|                                           | Total Energy equivalent (MJ/ha) |           |          |          |           |          |           |  |
|-------------------------------------------|---------------------------------|-----------|----------|----------|-----------|----------|-----------|--|
| Energy                                    | Farmer                          | <b>T1</b> | T2       | T3       | <b>T4</b> | T5       | <b>T6</b> |  |
| INPUTS                                    | •                               |           |          |          |           | 1        | •         |  |
| Human Labor                               | 166.6                           | 166.6     | 166.6    | 166.6    | 166.6     | 166.6    | 166.6     |  |
| Machinery                                 | 627                             | 627       | 627      | 627      | 627       | 627      | 627       |  |
| Diesel Fuel                               | 2815.5                          | 2815.5    | 2815.5   | 2815.5   | 2815.5    | 2815.5   | 2815.5    |  |
| Chemical Fertilizers                      |                                 |           |          |          |           |          |           |  |
| a) Nitrogen                               | 6878.56                         | 6878.56   | 6878.56  | 6878.56  | 6878.56   | 6878.56  | 6878.56   |  |
| b) Phosphorous                            | 2637.28                         | 2637.28   | 2637.28  | 2637.28  | 2637.28   | 2637.28  | 2637.28   |  |
| c) Potassium                              | 1438.35                         | 1438.35   | 1438.35  | 1438.35  | 1438.35   | 1438.35  | 1438.35   |  |
| Herbicides                                | 357                             | 357       | 357      | 357      | 357       | 357      | 357       |  |
| Water                                     | 3570                            | 2366.4    | 2315.4   | 2162.4   | 2295      | 2193     | 2295      |  |
| Electricity                               | 7374.362                        | 4887.864  | 4782.522 | 4466.497 | 4740.386  | 4529.702 | 4740.386  |  |
| Seeds                                     | 1837.5                          | 1837.5    | 1837.5   | 1837.5   | 1837.5    | 1837.5   | 1837.5    |  |
| Total energy input (MJ ha <sup>-1</sup> ) | 27702.15                        | 24012.05  | 23855.71 | 23386.69 | 23793.17  | 23480.49 | 23793.17  |  |
| OUTPUTS                                   | •                               | •         | •        | •        | •         |          |           |  |
| Grain Yield                               | 49980                           | 63945     | 62328    | 57918    | 59241     | 53949    | 48804     |  |
| Straw Yield                               | 111092.5                        | 115625    | 113590   | 111462.5 | 112110    | 109242.5 | 106837.5  |  |

### Analysis of energy indices in wheat production

| Indices                                    | Farmer    | <b>T1</b> | T2        | Т3        | <b>T4</b> | Т5        | <b>T6</b> |
|--------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Net Energy (MJ ha <sup>-1</sup> )          | 133370.35 | 155557.95 | 152062.29 | 145993.81 | 147557.82 | 139711.01 | 131848.32 |
| Energy Use Efficiency                      | 5.814     | 7.478     | 7.374     | 7.243     | 7.202     | 6.950     | 6.541     |
| Energy Productivity (kg MJ <sup>-1</sup> ) | 0.123     | 0.181     | 0.178     | 0.168     | 0.169     | 0.156     | 0.139     |
| Specific Energy (MJ.kg <sup>-1</sup> )     | 8.148     | 5.520     | 5.626     | 5.936     | 5.904     | 6.398     | 7.167     |
| Water productivity (kg m <sup>-3</sup> )   | 0.971     | 1.875     | 1.868     | 1.858     | 1.791     | 1.707     | 1.475     |

### Cost analysis (PKR) for wheat crop (per hectare) for Faisalabad-Pakistan, 2014-15

| Treatments                     | Farmer | <b>T1</b> | T2     | T3     | <b>T4</b> | T5     | <b>T6</b> |  |  |
|--------------------------------|--------|-----------|--------|--------|-----------|--------|-----------|--|--|
| INPUT                          |        |           |        |        |           |        |           |  |  |
| Seed                           | 2335   | 2335      | 2335   | 2335   | 2335      | 2335   | 2335      |  |  |
| Fertilizers                    |        |           |        |        |           |        |           |  |  |
| - Urea                         | 4150   | 4150      | 4150   | 4150   | 4150      | 4150   | 4150      |  |  |
| - DAP                          | 9880   | 9880      | 9880   | 9880   | 9880      | 9880   | 9880      |  |  |
| - MOP                          | 17000  | 17000     | 17000  | 17000  | 17000     | 17000  | 17000     |  |  |
| Spray                          |        |           |        |        |           |        |           |  |  |
| - Topic                        | 250    | 250       | 250    | 250    | 250       | 250    | 250       |  |  |
| - Bacterial Super              | 1350   | 1350      | 1350   | 1350   | 1350      | 1350   | 1350      |  |  |
| Irrigation                     | 3300   | 2186      | 2152   | 1996   | 2120      | 2026   | 2120      |  |  |
| (Energy cost)                  | 3300   | 2100      | 2132   | 1990   | 2120      | 2020   | 2120      |  |  |
| Fuel (Bed preparation + Sowing | 10500  | 10500     | 10500  | 10500  | 10500     | 10500  | 10500     |  |  |
| +Threshing)                    | 18500  | 18500     | 18500  | 18500  | 18500     | 18500  | 18500     |  |  |
| Labor                          | 15000  | 15000     | 15000  | 15000  | 15000     | 15000  | 15000     |  |  |
| Total Cost of Production       | 71765  | 70651     | 70617  | 70461  | 70585     | 70491  | 70585     |  |  |
| OUTPUT                         |        |           |        |        |           |        |           |  |  |
| Grain Yield                    | 110500 | 141375    | 137800 | 128050 | 126425    | 119275 | 103675    |  |  |
| Straw Yield                    | 60050  | 62500     | 61400  | 60250  | 60600     | 59050  | 57750     |  |  |
| Total Value of Production      | 170550 | 203875    | 199200 | 188300 | 187025    | 178325 | 161425    |  |  |
| Net Return                     | 98785  | 133224    | 128583 | 117839 | 116440    | 107834 | 90840     |  |  |
| Benefit to Cost Ratio ()       | 1.38   | 1.88      | 1.82   | 1.67   | 1.65      | 1.53   | 1.29      |  |  |



# **Conclusions**

- Soil moisture based treatment (at 30% MAD) gave 7.94% and 27.94% more yield compared to climate based treatment's (20 mm CPE) and farmer's practice respectively.
- The pumping water for irrigation was the highest energy consumption input for wheat production after chemical fertilizers
- Pumping water for irrigation was the highest energy consumption input for wheat production after chemical fertilizers.
- T1 (30% MAD) and T4 (20 mm CPE) treatments saved 33.72% and 35.72% energy respectively due to water saving over farmer practice.
- While T1 and T4 treatments increase 11.40% and 6.38% energy output in terms of grain yield respectively over farmer practice.





