

2nd International Electronic Conference on Metabolomics

20-27 November 2017 chaired by Dr. Peter Meikle

URINE AND FECES METABOLOMICS-BASED ANALYSIS OF CAROB TREATED RATS

Olga Begou¹, Olga Deda¹, Helen Gika², Ioannis Taitzoglou³, Nikolaos Raikos², Agapios Agapiou⁴, Georgios Theodoridis^{1,*}

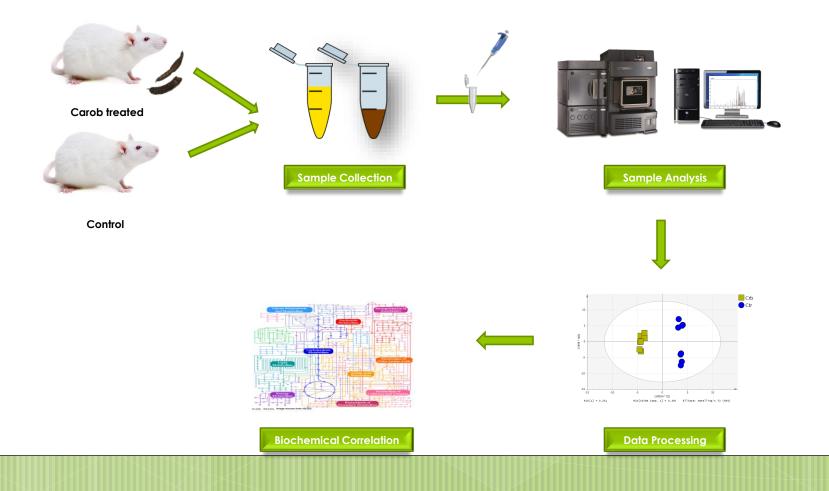
¹ Laboratory of Analytical Chemistry, School of Chemistry, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki,

² Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki

³ Laboratory of Animal Physiology, School of Veterinary Medicine, Aristotle University of Thessaloniki, University Campus 54124 Thessaloniki

⁴Department of Chemistry, University of Cyprus, P.O.Box 20537, 1678 Nicosia, Cyprus

* Corresponding author: gtheodor@chem.auth.gr


A R I S T O T L E UNIVERSITY OF THESSALONIKI

Graphical Abstract

IECM

URINE AND FECES METABOLOMICS-BASED ANALYSIS OF CAROB TREATED RATS

Graphical Abstract

Abstract

Abstract

Ceratonia siliqua L. Fabaceae, commonly known as the carob tree, is native to the eastern Mediterranean countries and its products are widely used in the diet of people living in Mediterranean Europe, Middle East and North Africa. Carobs are considered to be of high nutritional value, as they are virtually fat-free, rich in proteins, antioxidants, vitamins and contain several important minerals. Different types of carob products are available in the local market, such as carob syrup, powder, flour, snack, cream, etc. However, the potential positive health effects of carob-containing products are largely unknown and have not been extensively studied. The aim of this study was to determine significant urine and fecal metabolome alterations in 8 rats treated with carob powder for 15 days as compared to 8 non-treated ones (controls) using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and to underlie specific metabolites that changed according to the treatment.

Urine and fecal samples were collected in five time points during a 15 day period of treatment with carob powder throughout water consumption (10 g powder / L). A targeted HILIC-UPLC-MS/MS method was applied for the determination of 101 polar metabolites (sugars, amino acids, organic acids, amines, etc) in a single run of 40 min in both rat urine and feces. Chromatographic separation was performed on an Aquity BEH amide column (2.1 x 100 mm, i.d. 1.7 μ m); the mobile phase was consisted of A: Acetonitrile:H₂O 95:5 v/v (+ 10 mM ammonium formate) and B: H₂O:Acetonitrile 70:30 v/v (+10 mM ammonium formate). The solvents flow rate was set at 0.5 mL/min. Mass spectrometry parameters were optimized for each of the 101 pre-selected analytes.

Approximately 55 urinary and fecal metabolites were identified in both specimens. Data were further processed with multivariate (SIMCA 13) and univariate statistics (ANOVA). The differentiation of treated rats and controls was highlighted using discriminant multivariate models.

<u>Acknowledgements</u>: The authors would like to thank the "Black Gold" project financially supported by the University of Cyprus

Keywords: targeted metabolomics, carob, rat, urine, feces, LC-MS/MS

Introduction

- High nutritional value & fat-free (rich in proteins, antioxidants, vitamins & several important minerals).
- Different types of carob products available in the local market (carob syrup, powder, flour, snack, cream, etc.).

However, the potential positive health effects of carob-containing products are largely unknown and have not been extensively studied.

Carob tree, Ceratonia siliqua L., (native to the eastern Mediterranean countries) is widely used in the diet of people living in Mediterranean Europe, Middle East and North Africa.

Effects

- Anticancer
- Antiviral
- Antidiabetes
- Antioxidant
- Digestive
- Antidiarrheal
- Control hyperlipidemia
- Gastroesophageal reflux (in infants)
 Weight loss

http://www.sigmaaldrich.com/life-science/nutrition-research/learning-center/plant-profiler/ceratonia-siliqua.html

MS-profiles

MVA

Markers

100 -

Correlation

networks

Introduction

Systematic study of the unique chemical fingerprints that specific cellular processes leave behind

The study of their small-molecule metabolite profiles

Daviss, Bennett (April 2005). "Growing pains for metabolomics". The Scientist. 19 (8): 25–28.

- Mass spectrometry (MS) dominates in holistic metabolite profiling due to its sensitivity and wingspread availability.
- Liquid chromatography-Mass spectrometry (LC-MS) is currently the most widely used mass spectrometric technology, due to its ability to separate and detect a wide range of molecules.

Theodoridis et al. 2012, Anal. Chim. Acta, 711:7-16

Literature Review

	• •			
Matrix	System	Compounds of interest	Column	Ref.
Carob Fruits	HPLC-UV-MS/MS	Polyphenols	Aqua C18	Papagiannopoulos et al.
			(150 mm x 2 mm, 3µm)	2004
Carob	LC-MS/MS	Flavonoids	Discovery C-18 column	Vaya et al.
			(15 × 4.6 mm, 5 µm)	2006
Carob pod	HPLC-PDA, HPLC-MS	Sugars,	1. Ion-300 column	Ayaz et al.
		amino and organic acids,	(300 mm x 7.8 mm, 10 µm)	2007
		minerals and	2. Luna Phenyl-Hexyl	
		phenolic compounds	(250 x 2 mm, 5 μm)	
Carob flour	LC-MS/MS	Phenolic Compounds and	HSS T3	Ortega et al.
		Alkaloids	(100 mm x 2.1 mm, 1.8 μm)	2009
Wild carob seed oil	GC-MS, HPLC	Different lipids	CP-Sil 88	Matthaus et al.
			(100 m x 0.25mm,	2011
			0.2 µm)	
			Diol phase HPLC column (25 cm×4.6mm)	
Carob extracts and mice urine,	LC-MS/MS,	Lipids, amino acids, organic	C18 Luna 3 n pfp (2)	Jove et al.
plasma and cecal	LC-QTOF	acids and phenolic related	(150 mm x 2 mm)	2011
		compounds	· · · · · ·	
Carob leaves	HPLC -MS/MS	Polyphenols	Zorbax Column Synergi 4 µ	Aissani et al.
			MAX-RP 80A	2012
			(150 mm × 4.6 mm)	
Carob Bean	HPLC-RID	D-pinitol and sugars	CARBOsep Coregel 87P	Turhan
			(7.8 × 300 mm)	2013
Carob Powder	GC-MS	Volatile compounds	ZB-5ms	Racolța et al.
			capillary column	2014
			(50 m x 0.32mm, 0.25 μm)	
Carob leaf extracts	HPLC-MS, GC-MS	Phenolic acids	Kinetex C-18 column, (100 x 3 mm)	Meziani et al.
			ZB-5MS column	2015
			(30 m x 0.25 mm, 0.25 µm)	
			C18 Alltima	
Carob pulp	HPLC-DAD-MS	Proteins, phenolic compounds	(150 mm × 2.1 mm)	Benchikh et al.
			, ,	2016
Carob pod & Carob syrup	TLC, HPLC-RID	Carbohydrates and Sugars	analytical column	
			(300 mm x 8.0 mm)	Fidan et al.
			()	2016
Carob bean	SPME-GC-MS	Volatile compounds	DB5-MS column	Farag et al.
			(30 m x 0.25 mm,	2017
			0.25 µm)	
	GC-QTOF,	Different lipids	1. BPX90 SGE column	
Carob pod	LC-QTOF	Different lipids	(30 m x 0.25 mm, 0.25 µm)	Nguyen et al.
Curob pou			2. Phenomenexkinetex C18	
				2017
			(100 mm x 3.0 mm, 2.6 µm)	
				IECM

To determine significant urine and fecal metabolome alterations in rats treated with carob powder using liquid chromatographytandem mass spectrometry (LC-MS/MS).

To underline specific metabolites that are responsible for the differentiations according to the treatment.

- 😻 16 male Wistar rats
- 2.5-3.5 months of age
- 2 groups, 8 fed rats vs. 8 control ones
- 15 days carob feeding
- 1 week acclimatization period
- Rats were housed in individual cages in standard conditions
- S sample collection time points (D0, D1, D5, D10, D15)
- Vrine and feces samples were collected
- All samples were analyzed using LC-MS/MS
- Rats body weight and food consumption were measured during the in vivo experiment

In vivo carob study

A notably useful specimen to assess the effect of the study factor

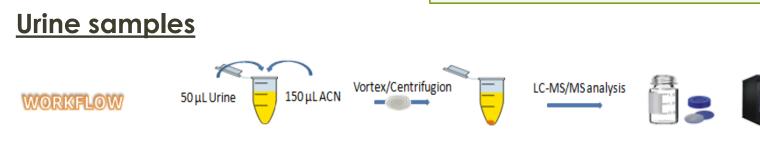
A particularly complex specimen requires optimized sample preparation protocol

O. Deda, et al, J. Pharm. Biomed. Anal. 113 (2015) 137–150.
O. Deda, et al., J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci. 1047 (2017) 115–123.

Gut microbiota is considered to be responsible for the carobs metabolism partially in rat large intestine

Harmuth-Hoene and Schelenz, J Nutr 1980;110(9):1774-1784.

Towle and Schranz, Unpublished report from Hercules Research Center 1975.

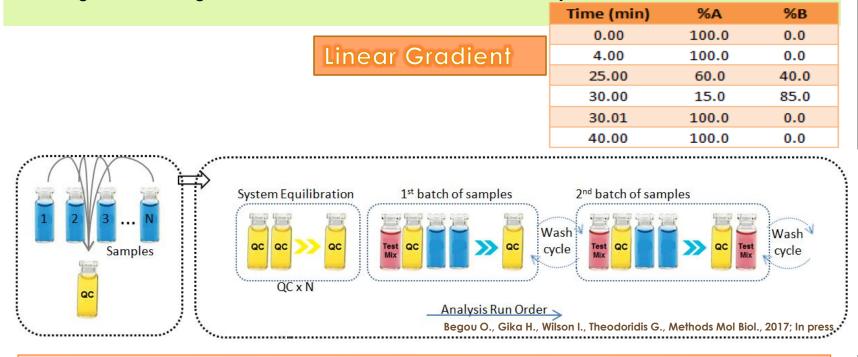

- 10 g carob powder diluted in warm water (10 ppm)
- Flasks of rats were filled with 750 ml water
- Let them be cooled and place them back to cages
- Preparation of fresh solutions and refill every 2 days

Fecal samples

- Extraction with 1-propanol: water solution, in a ratio of 1:4 fecal sample weight to extraction solvent
- Vortex-mixing
- Sonication for 10 min
- Vltra-centrifugation (20.000 rpm, 4°C, 30 min)
- « Filtration through syringe filters PTFE 0.22 μm

Optimized sample preparation protocol based on: O. Deda, H. G. Gika, G. Theodoridis, Methods Mol Biol., 2017; In press

LC-MS Analysis


IEC

UHPLC-MS/MS Conditions

Column: Acquity BEH Amide (150×2.1mm i.d., 1.7 μm).

- Mobile Phase: A: ACN: H₂O 95:5 v/v, 10mM HCOONH₄, B: ACN: H₂O 30:70 v/v, 10mM HCOONH₄
- Flow rate : 0.50 mL/min.
- Instrument: AcquityH UPLC class, Xevo TQD.

The mass spectrometry parameters were optimized for each of the 100 pre-selected analytes (aminoacids, organic acids, sugars, nucleosides, amines and other molecules).

HILIC/MS-MS analysis QCs samples & standard mixes to evaluate stability & repeatability

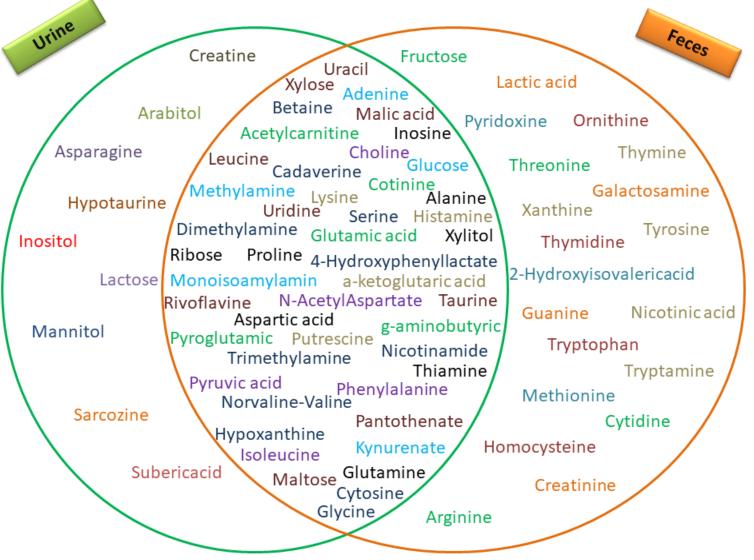
Data handling

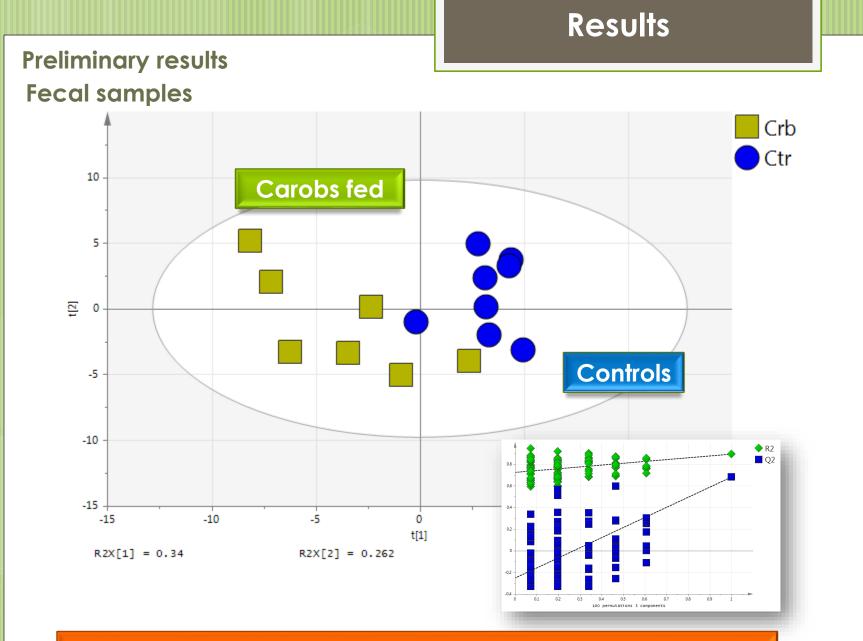
MetaboAnalyst 3.0

<u>Software</u>

MassLynx (Waters, UK)
 TargetLynx (Waters, UK)
 SIMCA 13.0 (Umetrics, Sweden)
 MS Excel (Microsoft, USA)
 MetaboAnalyst 3.0 (Xia et al., 2015)

Statistical analysis

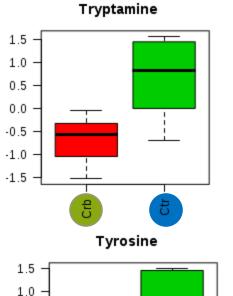

- Univariate statistics (t-test, fold change)
- Normalization: Log transformation
- Scaling: Univariate (UV) & Auto
- « RSD% of QCs to evaluate stability of the system



Results

IEC

PLS-DA scores plot of fecal samples (Day 1)

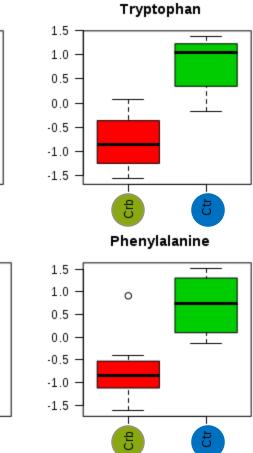


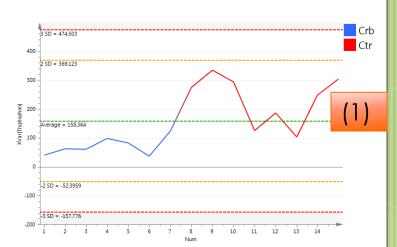
OPLS-DA scores plot of fecal samples (Day 15)

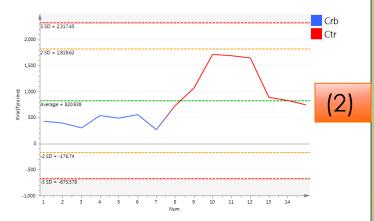
Results

Preliminary results Fecal samples

0.5


0.0


-0.5


-1.0

-1.5

문

Box plots of differentiated compounds in day 15 derived by t-test and VIP values

đ

Examples of Hotelling's line of Tryptophan (1) & Tyrosine (2)

- Differentiation between the 2 groups in the day 1 was observed.
- Multivariate statistical analysis managed to separate fecal samples in the day 15.
- Both Multivariate and Univariate statistical analysis demonstrate specific compounds altered in rats fed with carob powder for 15 days (tryptamine, tryptophan, tyrosine, phenylalanine).

Results Preliminary results Urine samples 2 15 10 Controls 5 1.2896 * to[1] 0 Carobs fed -5 -10 ♦ R2 ■ Q2 -15 -20 -2 -10 -8 -6 0 2 -4 4 0.2 1.01965 * t[1]

OPLS-DA scores plot of urine samples (Day 1)

Ellipse: -02

-0.6 -

0.2

0.6

0.8

0.4

100 permutations 5 components

R2X[XSide Comp. 1] = 0.443

R2X[1] = 0.183

- Mild differentiation between the 2 groups in the day 1.
- Multivariate statistical analysis did not manage to separate urine samples, statistical significantly, in the day 15.
- Univariate statistical analysis demonstrates specific compounds altered in rats fed with carob powder for 15 days (glucose, inositol, thiamine, alanine).

Preliminary results Urine samples

- Lower number of urine samples (unable to collect from some rats at the specific time point).
- Matrix effect may affect the obtained results.
- Normalization could be applied in raw data from urine samples in order to overcome matrix effect.

- Statistically significant differentiations, according to food consumption, were observed between weeks for both fed and control groups.
- The metabolomics based analysis manage to separate the analyzed samples according to the treatment.
- Carob treated rats showed different metabolic profiles comparing to the controls allowing their discrimination by LC-MS/MS-urine and fecal profiling analysis.
- Carobs consumption may affect the fecal metabolome in greater scale than urine metabolome.

*Based on our preliminary results tryptamine, was found to be affected in both days 1 and 15 of sample collection.

*Affected metabolic pathways derived from fecal sample analysis: aminoacyl-tRNA biosynthesis, phenylalanine tyrosine and tryptophan biosynthesis.

✓Jove et al., 2011 observed that cecal metabolome was affected more than urine and plasma metabolome in mice fed with carobs.

*Based on our preliminary results, and the only relevant metabolomics-based published study (Jove et al., 2011), as well as older studies (Harmuth-Hoene and Schelenz, 1980), it could be considered that carobs greatly affect gut microbiota.

References

IECM

- 🌾 Corsi L et al., Fitoterapia. 2002 Dec;73(7-8):674-84
- Feldman et al., Br J Nutr. 1995 Nov;74(5):681-8.
- Mastromarino et al., J Antimicrob Chemother. 1997 Mar;39(3):339-45.
- 🐮 Kumazawa et al., J Agric Food Chem. 2002 Jan 16;50(2):373-7.
- Carroll et al., Arch Pediatr Adolesc Med. 2002 Feb;156(2):109-13.
- Haskell et al., Am J Cardiol. 1992 Feb 15;69(5):433-9.
- & Gruendel et al., J Nutr. 2006 Jun;136(6):1533-8.
- **K** Harmuth-Hoene and Schelenz, J Nutr 1980;110(9):1774-1784.
- * Towle and Schranz, Unpublished report from Hercules Research Center 1975.
- 🖉 Meziani et al. , Microbial Pathogenesis, 2015, 78, 95-102
- 🐮 🛛 Ayaz et al. Journal of Food Quality, 2007, 30, 1040–1055
- Racolta et al. Food Science and Technology 2014, 71(2)
- Fidan et al., CBU international conference on innovations in science and education, MARCH 23-25, 2016, Prague, Czech republic
- * Nguyen et al., International Journal of Analytical Techniques , 2017
- Benchikh et al., SDRP Journal of Food Science & Technology, 2016
- 😻 Farag et al., Journal of Advanced Research, 2017, 8, 379–385
- 🥙 Jove et al., J. Proteome Res., 2011, 10, 3501–3512
- 😻 Aissani et al., J. Agric. Food Chem. 2012, 60, 9954–9958
- 🖉 Matthaus et al., Scientia Horticulturae, 2011, 130 181–184
- Ortega et al., J. Agric. Food Chem. 2009, 57, 7239–7244
- 🐮 Turhan, International Journal of Food Properties, 2013, 17:2, 363-370
- Papagiannopoulos et al., J. Agric. Food Chem. 2004, 52, 3784-3791
- 😻 Vaya et al., BioFactors, 2006, 28, 169–175
- Xia et al., 2015. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucleic Acids Res. 43, W251–W257

Images

- http://www.care2.com/greenliving/8-health-benefits-of-carob.html
- http://singledesk.in/aims-and-objectives/
- https://www.marksdailyapple.com/dear-mark-carob-psyllium-chia-seeds-and-vanilla/

Acknowledgments

We would like to thank the "Black Gold" Research Project financially supported by the University of Cyprus.

2nd International Electronic Conference on Metabolomics 20-27 November 2017

sponsors:

