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Abstract. The influence of entropy in multiple chemical equilibria is investigated for systems with 
two different types of sites for Langmuir’s condition, which means that the binding enthalpy of the 
species is the same for each type of sites and independent of those that are already bonded and that 
this holds for both types of sites independently. The analysis makes use of the particle distribution 
theory which holds for each type of sites separately. We provide physical insight by discussing an 
Xm{AB}Xn system with m = 0, 1, …, M and n = 0, 1, …, N in detail. The procedure and results are 
exemplified for an Xm{AB}Xn system with M = 3 and N = 2. A satisfactory consequence of the results 
is that the eleven equilibrium constants needed to describe such a system can be expressed as a 
function of two constants only. This is generally valid for any Xm{AB}Xn system where the [(M + 1)(N 
+ 1) − 1] equilibrium constants can be expressed as a function of 2 constants only. This has also 
implication for quantum-theoretical studies in the sense that it is sufficient to model only two 
reactions instead of many in order to describe the system. We have observed that it is sufficient to 
have two different sites in a multiple equilibrium in order to observe a characteristic of isotherms 
that cannot be described by Langmuir’s equation. This is a result that may be useful for explaining 
experimental data which otherwise have not been explained satisfactory so far. Instead of inventing 
adsorption models it might often make sense of describing the system in terms of multiple 
equilibria. 

 

1. Introduction 

We explained the influence of entropy in multiple chemical equilibria by studying the particle 
distribution for the conditions that the binding enthalpy of the species is the same for all sites and 
that it is independent of those that are already bonded [1]. Consequences were discussed for the 
insertion of guests into the one dimensional channels of a host, for dicarboxylic acids, and for cation 
exchange of zeolites. The validity of the results is independent of the nature and the strength of the 
binding. The quantitative link between the description of multiple equilibria and Langmuir’s 
isotherm [2–4] was found to provide new insight. Multiple equilibria of objects with several 
equivalent binding, docking, coupling, or adsorption sites for neutral or charged species play an 
important role in all fields of chemistry [5–32]. We now investigate systems with two different types 
of sites, which we name Xm{AB}Xn, for the condition that the binding enthalpy of the species is the 
same for each type of sites and independent of those that are already bonded and that this holds for 
both types of sites independently. The analysis makes use of the particle distribution theory as 
described in ref. [1], which holds for each type of sites separately. The condition that the binding 
enthalpy of the species is the same for all sites and that it is independent of those that are already 
bonded is equivalent to the condition I. Langmuir used one hundred years ago to derive the 
Langmuir isotherm [2,3]. We therefore name it Langmuir’s condition. 
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2. Results and Discussion 

The number of distinguishable chemical objects of an Xm{AB}Xn (m = 0, 1, …, M and n = 0, 1, …, 
N) system is equal to (M + 1)(N + 1). From this follows that the number of equilibria with X is [(M + 
1)(N + 1) − 1] which is also the number of equilibrium constants. We show that Langmuir’s condition 
in connection with the particle distribution function allows to express the (M + 1)(N + 1) − 1 
equilibrium constants as a function of two different constants only. This is a simplification which 
allows studying systems quantitatively by experimental and theoretical means which otherwise 
might be difficult to handle. A numerical analysis of experimental data for a system with 5 different 
types of sites has been carried out based on this reasoning and has allowed to correct earlier reports 
on the reaction entropy of silver zeolite A [16]. We improve the physical insight by discussing a 
simple Xm{AB}Xn system in detail. The notation Xm{AB}Xn represents individual particles, a grid 
consisting of many sites, microporous objects, or other chemical systems. The procedure and results 
are exemplified for m = 0, 1, 2, 3 and n = 0, 1, 2. The 11 equilibria and the corresponding equilibrium 
constants Ki are collected in Table 1. 

Table 1. Equilibria of an Xm{AB}Xn system with m = 0, 1, 2, 3 and n = 0, 1, 2. + ⇌ K3 + ⇌ K2 + ⇌ K1 + ⇌ K6 + ⇌ K5+ ⇌ K4 + ⇌ K9 + ⇌ K8 + ⇌ K7 + ⇌ K11 + ⇌ K10 

We apply the stoichiometrie-matrix expression for evaluating these equlilibria [9,10]. Details of 
this procedure are reported in the appendix. The result is given in Table 2. It is convenient to use the 
following notations to write the concentrations of the individual objects, namely Ci and also 
[Xm{AB}Xn], but only [X] for the concentration of X. 

Table 2. Concentrations Ci, calculated based on the equilibria in Table 1 and Equation (1); see appendix. 

C1 = = 5 K1 K2 K3 K10 K11 
C2 = = 4 K1 K2 K10 K11 
C3 = = 3 K1 K10 K11 
C4 = = 4 K4 K5 K6 K10 
C5 = = 3 K4 K5 K10 
C6 =  = 2 K4 K10 
C7 = = 3 K7 K8 K9

C8 = = 2 K7 K8 
C9 = =  K7 
C10 = = 2 K10 K11 
C11 = =  K10 

C12 =  = −  
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We have 11 equation available for expressing the 13 concentrations: Ci, i = 1, 2, …, 12 and [X]. An 
additional equation is available from the fact that in a closed system the total concentration of the 
Xm{AB}Xn species, which we name A0, is constant, as expressed in Equation (1). The concentration C12 
=   can, hence, be determined using Equation (1). The concentration [X] of the ligand X that 
can bind to the  is the free variable. 

−  = 0 (1) 

We need to know 11 equilibrium constants in order to describe the evolution of the 
concentrations Ci of the twelve species as a function of the variable [X]. This is a difficult situation 
and may in many cases have as a consequence that a system cannot be handled in a satisfactory way. 
A very important simplification arises if Langmuir’s condition applies. This may often be the case 
sufficiently well. Langmuir’s condition implies in our example that K1, K4, and K7 are equal. The same 
holds for K2, K5, and K8 and also for K3, K6, and K9. From this follows a further simplification from the 
application of the particle distribution function f(n,r) [1,16,30], where n is the total number of 
equilibria of a set and r counts the individual equilibria in a set; r = 0, 1, …, n − 1: ( , ) = + 1 −− + 1 (2) 

The particle distribution function describes the entropy decrease in the corresponding reaction 
sets, as we have discussed in detail [1]. Applying Langmuirs’s condition and the particle distribution 
function we find the results reported in Table 3. 

The very satisfactory consequence of the result shown in Table 3 is, that the eleven equilibrium 
constants can be expressed as a function of two constants only, namely K1 and K10. Inserting this in 
the equation shown in Table 2 we find the Equations (3A) and (3B), where C12(X) is the concentration 
of  expressed as a function of the concentration of X. This is a nice and very useful result. It 
allows to study the concentration of the twelve species Ci, i = 1, 2, …, 12 as a function of the 
concentration X by considering only 2 parameters, namely K1 and K10, instead of eleven. This has also 
implication for quantum-theoretical studies in the sense that it is sufficient to model only two 
reactions instead of eleven, in order to describe the system. 

    ( )  =  
 

 =  

1106 K K112 K K14 K K127 K K13 K KK K127 K13 KK14 KK

( ) (3A) 
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( ) = −  ( ) (3B) 

Table 3. Relation between the equilibrium constants defined in Table 1 as a consequence of 
Langmuirs’s condition and the particle distribution function. 

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 
 K5 K6 K1 K2 K3 K1 K2 K3   
 K8 K9         
 f(3,2)K1 f(3,1)f(3,2)K1        f(2,1)K10 
  K1  K1 K1  K1  K1 K1  K1  K1   K10 

 

We illustrate the meaning of this result by calculation the concentrations Ci for two sets of 
equilibrium constants K1 and K10, namely 50 and 1, and 1 and 50, as a function of the concentration of 
X. A comparison of the results shown in Figures 1 and 2 with those reported in Figures 4, 5, and 7 in 
ref. [1] illustrates well that the behaviour of the system with two types of sites is very different from 
that of a systems with only one type.  

 
Figure 1. Concentration of Xm{AB}Xn as a function of the concentration of X, (A) and (B), and  versus 
the total concentration [X]tot of X in the system, (A’) and (B’). (A) and (A’) calculated for K1= 50.0 and 
K10 = 1.0; (B) and (B’) calculated for K1= 1.0 and K10 = 50.0.  Red lines: [X3{AB}Xn] (solid: n=2, dash: n=1, 
dash dot: n=0). Blue lines: [X2{AB}Xn] (solid: n=2, dash: n=1, dash dot: n=0). Green lines: [X{AB}Xn] 
(solid: n=2, dash: n=1, dash dot: n=0). Black lines: [{AB}X2] solid: [{AB}X] dash. Pink line: [{AB}] = C12 
(solid). 

We see e.g. in Figure 1(A), that the X{AB}Xn appear only at the beginning for small values of [X] 
and even more, that only X{AB}X shows temporally a value of larger than 0.05, while X{AB}X2 always 
stays very small. We note that {AB} vanishes soon and that the X3{AB}Xn become dominant. [{AB}X2] 
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and [{AB}X] always remain small. The situation changes very much in Figure 1(B). The symmetry of 
the plot of the concentrations Ci versus the total concentration [X]tot we have observed in Figure 4B of 
ref, [1] has completely disappeared, however, in both cases as seen in Figure 1(A’) and 1(B’). We also 
observe that out of the 12 species Xm{AB}Xn only few manage to evolve significant concentrations. An 
example with different values of K1 and K10 is reported in the appendix.  

The fractional coverage expressed as a function of the concentration [X] is of special interest, also 
because it can often be determined experimentally relatively easy. We show this in Figure 2. 

 
Figure 2. Isotherms expressed as a function of the concentration of [X]. Left: Calculated for K1= 50.0 
and K10 = 1.0. Right: Calculated for K1= 1.0 and K10 = 50.0. (A) and (B) in the range of [X] between 0 and 
2, and (A’) and (B’) between 0 and 20. Solid lines: Amount of the objects Xm{AB}Xn. Red: m=1,2,3, all 
n; divided by 3. Blue: {AB}Xn, n=1,2; divided by 2. The rectangles and the circles correspond to 
Langmuir’s eqs. (29) and (29A) of ref. [1] with KL=K1/3 and KL = K10/2, respectively. Green: all Xm{AB}Xn, 
except {AB}, divided by 5. Black, dashed: Isotherm calculated using Langmuir’s eqs. (29) and (29A) of 
ref. [1] with optimized values for KL. Orange, dash dot: Sum of the red and the blue curves weighted 
by an optimized factor. 

It is interesting but not surprising that the amount of the objects Xm{AB}Xn (m=1,2,3, all n; divided 
by 3) can be perfectly described by Langmuir’s isotherm equation. We observe the same for the 
concentration of {AB}Xn (n=1,2; divided by 2). The sum of all objects Xm{AB}Xn (m=0,1,2,3, all n), 
however, cannot be described by the Langmuir isotherm equation. This behaviour seems to be of 
general validity, as I have numerically tested for a number of representative examples. It should be 
possible to prove this analytically but such a proof is not yet known. If the numerical values of K1 and 
K10 are equal, the system simplifies to the situation we have discussed in ref. [1]. In the other extreme, 
when K1 and K10 differ by orders of magnitude, the system decomposes into separate parts.  

Different types of explanations for isotherms that deviate from Langmuir isotherms have been 
developed. They are in many cases satisfactory because they have been linked to a microscopic 
phenomenon, but they seem to be arbitrary in other situation.[6,11,18,24] We find that it is sufficient to 
have two different sites in a multiple equilibrium in order to observe a characteristic that differs from 
Langmuir’s equation, despite of the fact that the latter applies for individual parts. Writing multiple 
chemical equilibria could therefore be useful for explaining experimental data and also for making 
prediction. Instead of inventing adsorption models it might make sense to describe a system in such 
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terms. The system may consist of one set of equivalent sites,[1] two sets, as reported here, or even of 
several sets of equivalent sites.[16] 

Appendix A 

We express the equilibrium equations of the reaction sin Table 1 by means of the stoichiometry 
matrix; see refs. [9,10], where the labels wit a bar are the logarithm of the corresponding object:  =  log ( ). This leads to Equation (A1). 

 =  
 

 (A1)

Linear transformation of (A1) allows finding the solution (A2); see e.g. ref. [10]. 

  =  
 +   +  +   +   +  +   +  +  +   +   +   +  +   +   +   +   +  +   +  

 (A2) 

Using this solution we can express the concentrations of the Xm{AB}Xn species as reported in 
Table A1. 

[X] is considered to be a parameter, while the concentration C12 =  can be determined for 
the condition that in a closed system the total concentration of the Xm{AB}Xn species, which we name 
A0, is constant, a fact which we express in Equation (A3) as follows: 

−  = 0 (A3) 

Table A1. Concentrations Ci, calculated using Equation (A2). 
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C2 =  = 4 K1 K2 K10 K11 
C3 =  = 3 K1 K10 K11 
C4 =  = 4 K4 K5 K6 K10 
C5 =  = 3 K4 K5 K10 
C6 =   = 2 K4 K10 
C7 =  = 3 K7 K8 K9 
C8 =  = 2 K7 K8 
C9 =  =  K7 
C10 =  = 2 K10 K11 
C11 =  =  K10 

Figures A1 and A2 show an example calculate with different equilibrium constants, namely: 
(A,A’) K1=5 and K10 = 1;  (B,B’) K1=1 and K10 = 5. We observe a different behavior with respect to 
Figures 1 and 2, as expected.  

 
Figure A1. Concentration of Xm{AB}Xn as a function of the concentration of X, (A) and (B), and  
versus the total concentration [X]tot of X in the system, (A’) and (B’). (A) and (A’) calculated for K1= 5.0 
and K10 = 1.0; (B) and (B’) calculated for K1= 1.0 and K10 = 5.0.  Red lines: [X3{AB}Xn] (solid: n=2, dash: 
n=1, dash dot: n=0). Blue lines: [X2{AB}Xn] (solid: n=2, dash: n=1, dash dot: n=0). Green lines: [X{AB}Xn] 
(solid: n=2, dash: n=1, dash dot: n=0). Black lines: [{AB}X2] solid: [{AB}X] dash. Pink line: [{AB}] = C12 
(solid). 
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Figure A2. Isotherms expressed as a function of the concentration of [X]. (A’) calculated for K1= 5.0 
and K10 = 1.0; (B’) calculated for K1= 1.0 and K10 = 5.0. (A) and (B) in the range of X between 0 and 2 
and (A’) and (B’) between 0 to 6. Solid lines: Amount of the objects Xm{AB}Xn. Red: m=1,2,3, all n; 
divided by 3. Blue: {AB}Xn, n=1,2; divided by 2. The rectangles and the circles correspond to 
Langmuir’s eqs. (29) and (29A) of ref. [1] with KL=K1/3 and KL = K10/2, respectively. Green: all Xm{AB}Xn, 
except {AB}, divided by 5. Black, dashed: Isotherm calculated using Langmuir’s eqs. (29) and (29A) of 
ref. [1] with optimized values for KL. Orange, dash dot: Sum of the red and the blue curves weighted 
by an optimized factor. 
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