Toward a Coupled Oscillator Model of
the Mechanisms of Universal Evolution
and Development
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The big questions: Sagan, Chaisson, Kurzweil

The search for universality across different systems

The Principle of Least Action as a driver for self-organization
Positive feedback model: exponential acceleration

Negative feedback model: sinusoidal oscillations

Combine the two: exponential sinusoidal model

External noise — stochastic

Examples: Cities, Economy, techno, metabolic cycle, photosynthesis
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Conclusions: A, f, H all increase exponentially



Cosmic Calendar
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Cosmic Evolution

The arrow of time, from origin of the Universe
to the present and beyond, spans several
major epochs throughout all of history.
Cosmic evolution is the study of

the many varied changes in the

assembly and composition

of energy, matter and

life in the thinning

and cooling

Universe. . .
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FERD as measure for complexity
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Exponential Growth of Computing

Twentieth through twenty first century
Loganthmic Plot

All Human Brains
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The Principle of Least Action as a driver for self-organization
Positive feedback model: exponential acceleration

Negative feedback model: sinusoidal oscillations

Combine the two: exponential sinusoidal model

External noise — stochastic

Examples: Cities, Economy, techno, metabolic cycle, photosynthesis
Conclusions: A, f, H all increase exponentially

SIS S



A first principle

* The Least Action Principle for a system states: all processes in nature
occur with the least expenditure of action, which 1s the product of time
and energy for them.




Quantity of organization

hnm
a = "

U

* Organization, a, 1s inversely proportional to the average number of quanta of
action per one element and one edge crossing of a network.

* n 1s the number of elements in the system and m 1s the number of edge crossings
per unit time.



Total flow and number of quanta

* Recognize that nm, the total number of edge crossings, is the flow, ¢,
of elements per unit time in the network: ¢=nm.

2.1

i

* Recognize that 0= 1s the total number of quanta of action 1n the
system in certain interval of time.

e Therefore:

Q | S
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Positive feedback model — exponential solutions
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Exponential growth of a and Q in time
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Data for CPUs since 1971 (closed circles) and an exponential fit (solid line). The transition
from single to multicore processors around time 10°[sec], does not affect the trend. a and Q do

not increase smoothly but in steps.

An edge in this system is defined to be one computation.

To calculate a, the potential energy of the electrons was taken to be constant.
The Lagrangian was then calculated using the kinetic energy.

The data for Million Instructions Per Second (MIPS) for each processor was divided by the thermal design power and multiplied by the table
value of the Planck’s constant, to solve for a.



o and Q 1n a positive feedback
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average.



Confirming Chaisson’s data for CPUs
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@ (FERD) as a function of t (time). The data are from 1982 starting
with Intel 286, to 2012.



Power law relations between a, Q and .
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Data are filled circles and solid line is the fit. The data are from 1982 starting
with Intel 286, to 2012, ending with Intel Core 17 3770k. There is a good
agreement between the data and a power law fit.



Expanding to more mutually dependent functions —
interfucntions
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Positive feedback model solutions
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The figure shows the positive feedback loop among the
system variables, a, ¢, Q, and N and their corresponding scaling

relationships.
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Ficume 1: The figure shows the exponential scaling relationships between the characteristics, a, @, Q, and N, with respect to time on a
semilogarithmic scale (see (9)) with the goodness of fit (inset).
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* This cone has for levels all of the major stages in levels of organization that we

know of.

* From here we get a sense that there i1s discreteness, in progress and self-

The cone of development

organization in nature. .
1 Time

Exponential growth

Future

Civilization

Organisms
Molecules

Atoms

Particles

Ln(Interfunction)
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Negative Feedback
Proposed Mechanism of development
A system of coupled oscillators
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The big questions: Sagan, Chaisson, Kurzweil

The search for universality across different systems

The Principle of Least Action as a driver for self-organization
Positive feedback model: exponential acceleration

Negative feedback model: sinusoidal oscillations

Combine the two: exponential-sinusoidal model

External noise — stochastic

Examples: Cities, Economy, techno, metabolic cycle, photosynthesis
Conclusions: A, f, H all increase exponentially
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Positive and Negative feedback loops

O C==Pp O, Q> Q
\t%
* The solution of the system of coupled oscillators:
Fh :_k(fj _fj,H)
where
fj,H — fj,OeCt
On a first approximation, best fit 1s with:

f;=f.0e" (A+ Be™ cos(are™))



Ln(Alpha)
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On a first approximation, best fit 1s with:

fi=f,e" (A+ Be™ cos(are™))

A, 1, H all increase exponentially
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Homeostatic (stability) limits

An ongoing exponential sequence made The same exponential sequence
up of a cascade of S-curves (linear plot) of S-curves on a logarithmic plot

400 —

A

A single

S-curve
f (as seen on

a linear plot)

a00 - )

% By Kurzweil

Amplitude (A) is increasing and frequency (f=1/T) is increasing.

The max deviation from the dynamic equilibrium exponential line (Homeostasis) — is the limit of
elasticity of those Interfunctions, i.e. the homeostatic Limits. If the interfunctions deviate more
from their Homeostatic values, the system destabilizes and falls apart.
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The big questions: Sagan, Chaisson, Kurzweil

The search for universality across different systems

The Principle of Least Action as a driver for self-organization
Positive feedback model: exponential acceleration

Negative feedback model: sinusoidal oscillations

Combine the two: exponential sinusoidal model

External noise — stochastic

Examples: Economy, techno, cultural, biological, neural, Benard
Cells, Computers.

Conclusions: A, f, H all increase exponentially



Self-organized criticality as a fundamental property of
complex systems system
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Neural System. Phase plot. Network activity versus connectivity for ~ Benard Cells: Convective heat Flux as a function
neurons. A phase transition is observed at z* for the analytical of time for formation

solution with infinite n, whereas the transition appears in finite From Mever et al, 1991.

systems at slightly higher values of the control parameter n and is

smoothed out over a small interval.

http://journal.frontiersin.org/article/10.3389/fnsys.2014.00166/full



Benard Cells, H

Entropy production d /L/
Not a simple power law : / N4
= / / S /
A
* The Nusselts number 1s a Power Law : / / P L
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* with OSCll.latIOIlS, similar to those The Evolution of Nu with Ra at different conditions.
Observed ln Other Systems. Kaddiri-ISRN-Thermodynamis-2012



Evolution —

Biology — punctuated equilibrium

species 3
species 2

spedes 1

— TIme

http://thebrain.mcgill.ca/flash/capsules/outil_bleu09.html
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Accumulated Activity

The curve shows the number of mutation events for a single
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Sp@Ci@S. http://jasss.soc.surrey.ac.uk/4/4/reviews/bak.html

Cultural evolution
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Number of tools vs time: Cultural accumulation
when innovations may alter subsistence strategy,
increasing biological carrying capacity and leading
to an increase in population size. Red: leap
innovations; Orange: toolkit innovations. Blue dots
indicate the occurrence of big innovations that alter
the biological carrying capacity

Game-Changing Innovations: How Culture
Can Change the Parameters of Its Own
Evolution and Induce Abrupt Cultural Shifts

Oren Kolodny'**, Nicole Creanza®® *, Marcus W. Feldman’

1 Depariment of Biology, Stanford University, Staniord, California, United States. of America, 2 Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America



Exponential flow increase with oscillations

Projected Performance Development .
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Human Progress
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Time

The S-curve wave of
a new paradigm as it
explodes into growth
and then matures
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The Socio-Technological Age Progression

Robotic-Biotech Age

Infarmation Age

Post-Industrial Age

Industrial Age
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http://www.theequitykicker.com/2017/05/31/change-the-beguiling-nature-of-exponential-curves/
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Conclusions

* Exponential-sinusoidal solution coming from a positive and
negative feedback model 1s the best fit that we found so far of the
available data. A, f, H all increase exponentially.

* From dynamical systems approach and general systems theory, this
model 1s based on well studied system dynamics and agrees with
previous research.

* Further modeling 1s necessary to find the next level approximation
for the functional dependence and to find all of the influences on
the model.

* The exponential-sinusoidal oscillations of the homeostatic level
itself provide modulation. The random fluctuations from the
environment make the data stochastic.



