


MOL2NET, International Conference Series on Multidisciplinary Sciences http://sciforum.net/conference/mol2net-03

In Silico Repurposing, Design, Synthesis and Biological Evaluation of Bisacodyl Analogues

Maité SYLLA-IYARRETA VEITIA ^{a*}, Dany SIVERIO MOTA ^{b,c,d}, Vanessa LERARI ^a, Marta MARIN ^d, Rosa M. GINER ^d, Liliana VICET MURO ^b, Yankier RIVERO GUERRA^b, Françoise DUMAS^e, Clotilde FERROUD ^a, Peter A. M. DE WITTE ^c, Alexander D. CRAWFORD ^c, Vicente J. ARAN ^f and Yovani MARRERO PONCE ^{g,h}.

 ^a ECM, Laboratoire Chimie Moléculaire, génie des procédés chimiques et énergétiques (CMGPCE), EA 7341-Conservatoire National des Arts et Métiers, 2 rue Conté, 75003, Paris, France; ^b Unit of Computer-Aided Molecular "Biosilico" Discovery and Bioinformatic Research (CAMD-BIR Unit), Faculty of Chemistry-Pharmacy, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, 54830, Villa Clara, Cuba; ^c Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, Herestraat 49, 3000 Leuven, Belgium; ^d Department of Pharmacology, Faculty of Pharmacy, Universitat de València, València, Spain; ^e Laboratoire BioCIS, CNRS UMR 8076, IPSIT, Faculté de Pharmacie, Université Paris Sud, Université Paris Saclay, 92296 Châtenay-Malabry Cedex, France; ^f Instituto de Química Médica, CSIC, c/Juan de la Cierva 3, 28006 Madrid, Spain; ^g Grupo de Investigación Ambiental (GIA), Fundación Universitaria Tecnológico de Comfenalco, Facultad de Ingenierías, Programa de Ingeniería de Procesos, Cartagena de Indias, Bolívar 130001, Colombia. ^h Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas, Av. Interoceánica Km 12 ¹/₂ —Cumbayá. and Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito 170157, Ecuador

* Author to whom correspondence should be addressed; Email: maite.sylla@lecnam.net

Abstract.

In a recent article was described in silico repositioning, design, synthesis, biological evaluation and structure-activity relationship (SAR) of an original class of antiinflammatory agents based on a polyaromatic pharmacophore structurally related to bisacodyl (BSL) drug used in therapeutic as laxative. **Keywords** *TOMOCOMD-CARDD* Software, Atom-based bilinear indices, Anti-inflammatory database, Bisacodyl, Repurposing, Diarylmethylpyridines, Anti-inflammatory assay

Introduction

Drug repositioning allows the development of new indications for existing drugs with identified pharmacokinetic profiles, known safety profile and already resolved manufacturing issues [1]. The aim of this research was to identify new anti-inflammatory drug-like agents using in silico repurposing from a diverse series of known drugs, then design, synthesis and biological evaluation of analogs [2].

Materials and Methods

The potential of TOMOCOMD-CARDD (topological molecular computational design-computer aided rational drug design) methods to find out new anti-inflammatory drug-like agents from a diverse series of compounds using the total and local atom based bilinear indices as molecular descriptors was used [3]. Several biological in vitro (Nitrite and PGE2 production in LPS-stimulated cells, inhibitory effect on TNF- α and IL-6 release in cells) and in vivo (LPS-enhanced leukocyte migration to the injury zone in Zebrafish, TPA-induced mouse ear oedema, carrageenan-induced paw oedema test in rats) assays were performed in order to understand the mechanism of action of the identified known drug. A set of analogues of this drug was prepared using low-cost synthetic procedures and further biologically investigated in zebrafish models using LPS-enhanced leukocyte migration assay.

Results and Discussion

The models obtained with the TOMOCOMD-CARDD suites were validated by biological studies. BSL was identified as the first anti-inflammatory lead-like using in silico repurposing from commercially available drugs. At 30 μ M, BSL showed the best result with an anti-inflammatory activity superior to the value obtained by positive control indomethacin (85%). BSL reduced oedema and inhibited leukocyte infiltration comparable to indomethacin at 0.5 mg/ear. At dose of 20 mg/kg, BSL showed equipotent anti-inflammatory activity in protecting rats from carrageenan-induced inflammation when compared to indomethacin, while the effect was higher at 40 mg/kg. Considering the biological results, it was suggested that anti-inflammatory activity of BSL observed in vivo assays may be related to the release of cytokines, in particular with IL-6.

Diarylmethylpyridines and their corresponding *N*-oxides were synthesized by Friedel-Crafts hydroxylalkylation reaction with no more than two steps from commercially available inexpensive reagents. Among others, eighteen new compounds were synthesized in this work. Best anti-inflammatory activities reached 10 μ M in the pyridyl series and *N*-oxide respectively. The *N*-oxide functionality generally improved the anti-inflammatory activity and decrease toxicity in most series of BSL analogues.

Conclusions

Two compounds exhibited higher anti-inflammatory activities than BSL and represent new promising anti-inflammatory agents for further preclinical development.

References

- [1]. Li Y.Y., Jones S. J. M. Drug repositioning for personalized medicine, *Genome Medicine* **2012**, *4*, 27.
- [2]. Curr. Top. Med. Chem. 2017, 17(25) https://www.ncbi.nlm.nih.gov/pubmed/28816107
- [3]. Marrero-Ponce Y., Castillo-Garit J.A., Olazabal E. et al. J. Comput. Aided Mol. Des. 2004, 18, 615.