

1 Conference Proceedings Paper

An Automated Model to Classify Barrier Island 2 Geomorphology using Lidar Data 3

- Joanne N. Halls 1*, Maria A. Frishman² and Andrea D. Hawkes^{3,} 4
- 5 ¹ University of North Carolina Wilmington, Department of Earth and Ocean Sciences, 601 S. College Rd., 6 Wilmington, NC 28403; Hallsj@uncw.edu
- 7 ² University of North Carolina Wilmington, Department of Earth and Ocean Sciences, 601 S. College Rd., 8 Wilmington, NC 28403. maria.a.frishmancarver.mil
- 9 ³ University of North Carolina Wilmington, Department of Earth and Ocean Sciences & Center for Marine 10 Science, 601 S. College Rd., Wilmington, NC 28403. hawkesa@uncw.edu
- 11 Correspondence: hallsj@uncw.edu; Tel.: +01-910-962-7614
- 12 Published: date

13 Abstract: Limited research has studied using Lidar to map coastal geomorphology. The purpose of 14 this project was to build on existing research and develop an automated modeling approach to 15 classify coastal geomorphology of barrier islands and test this at four sites in North Carolina. Barrier 16 islands are shaped by natural coastal processes, such as storms and longshore sediment transport, 17 as well as human influences, such as beach nourishment and urban development. An automated 18 geomorphic classification model was developed to classify Lidar data into ten geomorphic types 19 over four time-steps from 1998 to 2014. Tropical storms and hurricanes had the most influence on 20 change and movement. On the developed islands, there was less influence of storms due to the 21 inability of features to move because of coastal infrastructure. Beach nourishment was the dominant 22 influence on developed beaches because this activity ameliorated the natural tendency for an island 23 to erode. Understanding how natural and anthropogenic processes influence barrier island 24 geomorphology is critical to predicting an island's future response to changing environmental 25 factors such as sea-level rise. The development of an automated model equips policy makers and 26 coastal managers with information to make development and conservation decisions and the model 27 can be implemented at other barrier islands.

- 28 Keywords: Lidar, barrier island, coastal geomorphology, feature movement
- 29

30 1. Introduction

31 Beautiful beaches and expensive properties are found on barrier islands which are features that 32 parallel the coastline and protect the mainland from waves and storms. Their location and sandy 33 composition make barrier islands both economically valuable and physically vulnerable. Studies 34 have shown that over 5 years a barrier island can migrate over 100m and experience a 50% change in 35 volume [1, 2]. Understanding the evolution of barrier island geomorphology can assist policy makers 36 and coastal managers with decisions regarding future land use development. In North Carolina, the 37 entire coastline is fronted by a chain of barrier islands. A typical barrier island system is composed 38 of a gently sloping continental shelf, a sandy island, and a back-barrier marsh that extends into an 39 estuary; and individual barrier islands are separated by tidal inlets [3].

40 Lidar data have been used to study coastal morphology [1, 2, 4, 5, 6, 7, 8]. In these studies, Lidar 41 and other data (such as aerial photography) have been used to map shorelines and marshes, but to 42 our knowledge there has not been a study that has developed an automated method for classifying 43 all geomorphic types on a barrier island. This project developed a model that classifies barrier island

The 2nd International Electronic Conference on Remote Sensing (ECRS 2018), 22 March–5 April 2018; Sciforum Electronic Conference Series, Vol. 2, 2018

44 features from Lidar data and tested this approach on four islands in North Carolina (Figure 1). The

45 second objective was to quantify change over time and correlate results with human and

- 46 environmental processes. The North Carolina coast has a diverse chain of barrier islands. In
- 47 particular, the barrier islands in the southern part of the state are distinctively different from those in
- 48 the north, which is largely due to differences in subsurface geology and coastline orientation [9].

49

Figure 1. Study areas: Wrightsville Beach and Masonboro Island are located in New Hanover County
 in southern NC and Currituck and Corolla are in Currituck County in the north.

52 2. Methods

53 The following geomorphic feature types were studied: 1) Intertidal: region that is inundated 54 daily due to tides; 2) Supratidal: region that is inundated occasionally due to astronomically high 55 tides or severe weather events; 3) Dunes: linear features that run parallel to the shoreface and have 56 the highest elevation; 4) Hummock: relic dune located behind the primary dune, lower elevation than 57 dunes, but higher elevation than other surrounding features, and have a round shape; 5) Overwash: 58 slightly elevated and flat areas located in the back barrier; 6) Swale: low depressions located between 59 dunes and upland areas; 7) Channel: low depressions, cut by water, located adjacent to the supratidal 60 region; and 8) Upland: flat portions of the barrier island, behind the primary dune.

61 Fieldwork was conducted from May to December 2016 to collect ground control points (GCPs) 62 to test model classification accuracy. Each study area was segmented by transects, cast 100m apart, 63 perpendicular to the island centerline. GCPs were collected using a Trimble 5800 series Real Time 64 Kinematic (RTK) GPS along 25 randomly selected transects per study area. Along each transect, the 65 center of each geomorphic feature was recorded with position and elevation (X, Y, Z), feature type, 66 and a GoPro Hero2 was used to collect video. The Trimble RTK has 10cm horizontal and 20cm vertical 67 accuracy when the data is collected in "stakeout" mode. The GCPs were post-processed in Trimble 68 Office, exported as CSV files and imported into ArcGIS.

Lidar data was acquired from NOAA's Digital Coast using the Data Access Viewer tool (www.coast.noaa.gov/dataviewer/#/lidar/search/). Each dataset was examined for point spacing and accuracy and the highest quality data sets were used in this study. Different data sets were used for the northern and.southern areas because no single data covered all four areas. For Masonboro and Wrightsville, the Lidar dates were: 1998, 2005, 2010 and 2014 and for Currituck and Corolla: 2001, 2005, 2009 and 2014. Research has tested the spatial resolution for examining volume change in The 2nd International Electronic Conference on Remote Sensing (ECRS 2018), 22 March–5 April 2018; Sciforum Electronic Conference Series, Vol. 2, 2018

coastal features and determined that 1-2m is optimal [10] and the inverse distance weighted (IDW)

- 76 interpolation technique was best for producing raster surfaces [11, 12]. After spatial sensitivity tests
- 77 were conducted, Lidar ground returns were interpolated using IDW with a 10-point search and
- maximum 10 m radius to create Digital Elevation Models (DEMs) with 1x1m cell size. DEM accuracy
 was tested by comparing interpolated elevation values to field collected GCP data. An average
- 80 elevation difference of less than 10cm was considered acceptable based on RTK accuracy and the time
- 81 span from Lidar data collection to fieldwork (2 years). For developed areas (Wrightsville and
- 82 Corolla), anthropogenic features were extracted from the ground return DEM prior to classifying the
- 83 geomorphic features.

The automated classification model consists of a series of steps that identified the unique characteristics of each type of geomorphic feature (Table 1). The model requires 4 inputs: 1) a DEM, 2) a study area polygon, 3) an ocean front line used to determine marine water from estuarine water,

87 and 4) MHHW and HAT tide height measurements (in meters) for the study area and corrected to

- 88 NAVD88. The model result is a polygon dataset (feature class in an ArcGIS geodatabase) with
- 89 attributes for each type of geomorphic feature in the study area.
- 90

Table 1. Parameters to classify geomorphic features.

Feature	Classification Parameters
Intertidal	MSL < elevation <mhhw< td=""></mhhw<>
Supratidal	MHHW < elevation <hat< td=""></hat<>
Dune	40m TPI >=150, Shape Index <0.6, hummock intersecting dune dune =
Hummock	12m TPI >=50, Shape index >0.6, Not intersecting a dune
Overwash	200m TPI >50
Swale	40m TPI <=-50, Not intersecting supratidal
Channel	40m TPI <=-50, Intersecting supratidal
Upland	200m TPI <=50

Calculation of the Topographic Position Index (TPI) is a critical component to the model [13, 14].
 The equation to calculate TPI is (1):

$$TPI = ((DEM - Focal Mean) + (0.5))$$
(1)

93 For each cell in the DEM, the focal mean was computed and compared to the elevation of the cell. A 94 cell that is higher than its neighboring cells has a positive TPI value, while a cell that is lower than its 95 neighboring cells has a negative TPI. The neighborhood distance for the focal mean depends on the 96 size of the feature. Small features are identified using small neighborhoods and larger features are 97 identified using larger neighborhoods [14]. Distance sensitivity tests were conducted and then 98 optimized neighborhood sizes and TPI thresholds were determined for each geomorphic feature. 99 Each TPI calculation has a radius (distance) and number of cells that define the neighborhood around 100 each cell.

101 The TPI index was scaled to the DEM for each of the study areas and was based on the mean 102 and standard deviation of the focal statistics for each DEM. The scaling enables versatility across 103 study areas so that the model uses the same TPI equations for each type of feature, but also 104 standardizes the index values based on the DEM for each area. The equation to calculate the scaled 105 TPI is (2):

$$TPI (scaled) = int(((TPI-mean/stdev)*100) + 0.5)$$
(2)

106 The TPI classification identifies topographic peaks and valleys, thus swales and channels were 107 grouped into the same class. These features were then segregated based on proximity to the 108 supratidal areas. Channels are valleys where water cuts through the barrier island, usually 109 perpendicular to the beach, and these features intersect the supratidal region. Swales are valleys The 2nd International Electronic Conference on Remote Sensing (ECRS 2018), 22 March–5 April 2018;

Sciforum Electronic Conference Series, Vol. 2, 2018

- 110 between dunes, usually parallel to the beach, so they are adjacent to dunes and do not intersect the 111 supratidal areas.
- Overwash fans are found adjacent to the back barrier. So, the distance between overwash and ocean was calculated and areas that were greater than 0.5 x the standard deviation of the distance were classified as overwash and areas closer to the ocean were reclassified as either hummock or dune depending on the TPI value. Dunes and hummocks have similar TPI values so a shape index was used to differentiate them. Dunes are generally oval shaped while hummocks are circular. The
- 117 equation to calculate the shape index is (3):

Shape Index =
$$(\sqrt{\text{Area}/\pi}) / (\text{Shape Length} / (2^*\pi))$$
 (3)

118 Shape index ≤ 0.6 were classified as dunes and shape index > 0.6 were classified as hummocks. Not

- all dunes are long and linear so some were misclassified as hummocks. To address this, the distancebetween dunes and hummocks was calculated and hummocks that were located closer than 0.5 x
- 121 stdev of the distance to dunes, were reclassified as dunes.
- Classified maps of each study area were analyzed for change over time. In the northern areas,
 the time steps were 2001-2005, 2005-2009, 2009-2014, and 2001-2014 and in the southern areas the time
 steps were 1998-2005, 2005-2010, and 2010-2014. Feature area, elevation and volume were computed
- 125 for each time period. Several methods were used to capture feature movement. Oceanfront shoreline
- 126 dynamics were compared using AMBUR [15]. Dune movement was calculated using Detect Feature
- 127 Change and Near tools in ArcMap. Change statistics were calculated using polygon overlay and then
- 128 cross-tabulation matrices were created. Statistically significant feature change was identified by
- 129 comparing the expected and observed change [16, 17].

130 3. Results and Discussion

131 The geomorphic classification model was developed in ESRI's ModelBuilder and run 16 times 132 (four study areas and four dates). The fieldwork GCPs were comparable to the Lidar data and could 133 therefore be used to assess the geomorphology classification results. Overall, model map accuracy 134 was 76% (Masonboro), 77% (Corolla), 78% (Wrightsville), and 81% (Currituck). Changes were 135 measured using: 1) elevation, volume, area and percentage of each feature type, 2) shoreline and dune 136 movement, and 3) statistically significant changes using cross-correlation matrices. At all four study 137 sites, intertidal and supratidal features had the lowest average elevation and dunes had the highest 138 average elevation. Most features experienced minimal change in elevation over the time period (1998-139 2014). Across all study areas, the largest change in volume was from 2005 to 2009/2010.

- 140 Upland was the largest feature on Wrightsville and Currituck (30%) and on Corolla it was 40%. 141 Alternatively, on Masonboro, intertidal and supratidal features were the largest area at ~50% of the 142 island. Changes were less substantial on developed islands in comparison to undeveloped. For 143 example, on Masonboro, the largest change was a 17% increase in the supratidal areas from 1998 to 144 2005, whereas on Wrightsville supratidal features increased by 3%. On Masonboro and Wrightsville, 145 from 1998 to 2005, most of the shoreline was eroding. The mean shoreline change was -3.1m/yr on 146 Masonboro and -0.5m/yr on Wrightsville, with 72% of the shoreline eroding on Masonboro and 52% 147 of the shoreline eroding on Wrightsville. Shoreline accretion rates increased and erosion rates 148 decreased from 2005 to 2010 when the mean shoreline change rate was -1.1m/yr on Masonboro and 149 +0.5m/yr on Wrightsville. From 2010 to 2014, the shoreline was again dominated by erosion. In 150 contrast, the northern region was accreting from 2001 to 2005 when the net shoreline change was 151 +0.6m/yr at Currituck and +0.8m/yr at Corolla. Currituck had 44% of the shoreline eroding and 152 Corolla had 22% resulting in areas of both erosion and accretion. From 2005 to 2009, the majority of 153 the shoreline was accreting with the mean shoreline change of +1.5m/yr on Currituck and +2.7m/yr 154 on Corolla. From 2009 to 2014, almost all (more than 90%) of the shoreline experienced a large amount 155 of erosion with the mean shoreline change of -3.4m/yr on Currituck and -2.7m/yr on Corolla.
- 156 Movement/migration of dune features was calculated by measuring the difference in spatial 157 position through time and was defined as: movement ($3m \le distance \le 25m$), no change (<3m), deletion

The 2nd International Electronic Conference on Remote Sensing (ECRS 2018), 22 March-5 April 2018; Sciforum Electronic Conference Series, Vol. 2, 2018

- 158 (feature completely eroded), new dune (>25m). On Masonboro, the largest amount of movement and 159
- the creation of new dunes was from 2005 to 2010. On Wrightsville, the largest amount of dune
- 160 movement was from 2010 to 2014, while the largest amount of deletion was from 2005 to 2010. On
- 161 Currituck, a similar amount of movement occurred from 2001 to 2005 and 2010 to 2014. The largest
- 162 amount of deletion was from 2005 to 2009. On Corolla, the largest amount of movement and creation 163
- of new features was from 2009 to 2014, while the largest amount of deletion was from 2005 to 2009. 164 The mean dune movement ranged from 1.1m (Masonboro from 2010 to 2014 and Currituck from 2009
- 165 to 2014) to 3.9m (Wrightsville from 2005 to 2010) and direction was consistently to the southwest.
- 166 Polygon overlay and cross-tabular change matrices were generated for each time period. Net 167 gain and loss (in area) was computed per feature type and time period. Significant change was 168 calculated by comparing observed and expected change [16]. On Masonboro and Wrightsville, the 169 largest significant changes were supratidal and intertidal. Less significant changes occurred in the 170 northern region (Currituck and Corolla) and the most recent time period had the least change.
- 171 Regional differences between the north (Currituck and Corolla) and the south (Masonboro and 172 Wrightsville) were much larger than differences between developed and undeveloped barrier 173 islands. There are two primary reasons why the north is different from the south: geologic setting 174 and beach nourishment. Developed islands had less change and dune movement than undeveloped 175 islands because development prevents natural processes such as washover and roll-over. This results 176 in features on the developed islands being "locked" in place which creates increased shoreline 177 erosion and island narrowing [9].
- 178 Storms were a dominant process influencing the four study areas. Post-storm AMBUR analysis 179 computed the average shoreline change of -3m/yr (Masonboro), -0.45m (Wrightsville), -3.4m/yr 180 (Currituck), and -2.7m/yr (Corolla). Feature change analysis documented dune erosion and the 181 transition of dunes to supratidal and intertidal and channels. On the undeveloped islands, there was 182 an increase in overwash. In the southern study areas, the stormiest period was 1998 to 2005 when the 183 area was impacted by eight major storms, four of which were hurricanes. Only a few small storms 184 impacted the northern study areas between 2001 and 2009, and then in 2011 Hurricane Irene, a 185 category 3, passed directly through the region, likely responsible for the changes observed on 186 Currituck and Corolla.
- 187 Beach nourishment temporarily increases the amount of sediment and overall elevation of the 188 oceanfront shoreline (White and Wang, 2003). However, nourishment has been shown to result in the 189 largest amount of storm induced erosion [11]. Beach nourishment took place at Masonboro and 190 Wrightsville in 2006 and 2010, just prior to the Lidar data collection. Shorelines accreted from 2005 to 191 2010 with an average shoreline change rate of +1.2m/yr at Masonboro and +0.5m/yr at Wrightsville. 192 This accretion was followed by a period of high erosion from 2010 to 2014: -1.7m/yr at Masonboro 193 and -3.5m/yr at Wrightsville. The location of accretion corresponded to the areas of highest erosion.

194 4. Conclusions

195 One of the benefits of using Lidar data for studying coastal systems is it provides elevation and 196 in sandy coastal environments, where many different features have similar reflectance properties, 197 features can be distinguished based on topography [18]. This study developed an automated model 198 to classify barrier island geomorphic features. On average, the model accuracy was 80% which is 199 acceptable given that it can be difficult to precisely measure the boundaries of different types of 200 features that gently vary over the terrain. Historical Lidar can be used to analyze change through 201 time and geospatial techniques can measure the distance and direction that features have moved. The 202 model was tested at undeveloped and developed islands and islands with different geologic settings. 203 When storms have occurred, they are the dominant force influencing change. In between stormy 204 periods, other activities, such as beach nourishment, can temporarily increase the oceanfront 205 elevation which later leads to the greatest rates of erosion. Lastly, urban development reduces the 206 amount of change because natural processes are prohibited from moving dunes and adjacent areas.

The 2nd International Electronic Conference on Remote Sensing (ECRS 2018), 22 March–5 April 2018; Sciforum Electronic Conference Series, Vol. 2, 2018

- 207 Acknowledgments: The authors would like to thank the United States Army for funding Ms. Maria Frishman
- 208 for her MS in Geoscience program and the Geological Society of America for funding fieldwork. Mr. Timothy
- 209 Moss assisted with TPI and Shape Index testing and model development and Michael Okely, Yvonne Marsan,
- 210 and Kevin Carver assisted with fieldwork.
- Author Contributions: Dr. Halls conceived and designed the research and Ms. Frishman conducted fieldwork,
- edited and developed the model, and generated the numerical results. Drs. Halls and Hawkes analyzed the dataand all three authors contributed to writing the paper.
- 215 and an unce autions contributed to writing the paper.
- 214 **Conflicts of Interest:** The authors declare no conflict of interest. The founding sponsors had no role in the design 215 of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
- 216 decision to publish the results.

217 References

- Paris, P., and Mitasova, H. Barrier island dynamics using mass center analysis: A new way to detect and track large-scale change *ISPRS International Journal of Geo-Information*, **2014**, v. 3, p. 49-65.
- White, S. A., and Wang, Y. Utilizing DEMs derived from LIDAR data to analyze morphologic change in
 the North Carolina coastline: *Remote Sensing of Environment* 2003, v. 85, p. 39-47.
- FitzGerald, D. M., Fenster, M. S., Argow, B. A., and Buynevich, I. V. Coastal impacts due to sea level rise.
 Annual Review of Earth and Planetary Sciences 2008, v. 36, p. 601-647.
- Judge, E. K., and Overton, M. F. Remote sensing of barrier island morphology: Evaluation of photogrammetry-derived digital terrain models. *Journal of Coastal Research* 2001, v. 17, p. 207-220.
- Sallenger, A. H., Krabill, W. B., Swift, R. N., Brock, J., List, J., Hansen, M., Holman, R. A., Manizade, S.,
 Sontag, J., Meredith, A., Morgan, K., Yunkel, J. K., Frederick, E. B., and Stockdon, H. Evaluation of airborne
 topographic lidar for quantifying beach changes. *Journal of Coastal Research* 2003, v. 19, p. 125-133.
- Smith, C. G., Culver, S. J., Riggs, S. R., Ames, D., Corbett, D. R., and Mallinson, D. Geospatial analysis of barrier island width of two segments of the Outer Banks, North Carolina, USA.: Anthropogenic curtailment of natural self-sustaining processes. *Journal of Coastal Research* 2008, v. 24, p. 70-83.
- Mitasova, H., Overton, M. F., Recalde, J. J., Bernstein, D. J., and Freeman, C. W. Raster-based analysis of
 coastal terrain dynamics from multitemporal Lidar data. *Journal of Coastal Research* 2009, v. 25, p. 507-514.
- Allen, T. R., Oertel, G. F., and Gares, P. A. Mapping coastal morphodynamics with geospatial techniques,
 Cape Henry, Virginia, USA. *Geomorphology* 2012, v. 137, p. 138-149.
- Riggs, S. R., Ames, D. V., Culver, S. J., Mallinson, D. J. *The Battle for North Carolina's Coast: Evolutionary History, Present Crisis, and Vision for the Future*. Chapel Hill, The University of North Carolina Press, 2011
 pp. 142.
- Woolard J. W., Colby, J. D. Spatial characterization, resolution and volumetric change of coastal dunes
 using airborne LiDAR: Cape Hatteras, North Carolina. *Geomorphology* 2002, v. 48, p. 269-287.
- Gares, P., Wang, Y., White, S. Using LiDAR to monitor a beach nourishment project at Wrightsville Beach,
 North Carolina, USA. *Journal of Coastal Research* 2006, v. 22, p. 1206-1219.
- Houser, C., Hapke, C., and Hamilton, S. Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms. *Geomorphology* 2008, v. 10, p. 223-240.
- Weiss, A. Topographic position and landforms analysis. Proceedings of the ESRI User Conference, San Diego, CA, 2001, (pp. 200-200). URL: http://www.jennessent.com/downloads/TPI-poster-TNC_18x22.pdf;
 accessed on February, 21 2015.
- Reu, J. D., Bourgeois J., Bats, M., Zwertvaegher, A., Gelorini, V., DeSmedt, P., Chu, W., Antrop, M.,
 DeMaeyer, P., Finke, P., VanMeirvenne, M., Verniers, J., Crombe, P. Application of the topographic position
 index to heterogeneous landscapes. *Geomorphology* 2013, v.186, p. 39-49.
- In Jackson, C. W., Alexander, C. R., Bush, D. M. Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA. *Computers and Geosciences* 2012, v. 41, p. 199-207.
- Pontius, R. G., Shusas, E., McCachern, M. Detecting important categorical land changes while accounting
 for persistence. *Agriculture Ecosystems and Environment* 2004, v. 101, p. 251-268.
- Halls, Joanne N. Measuring habitat changes in barrier island marshes: An example from southeastern North Carolina, USA. In *Remote Sensing and Geospatial Technologies for Coastal Ecosystem Assessment and Management* by Xizojun Yang (editor). Springer-Verlag series: Lecture Notes in Geoinformation and Cartography, 2009, pp. 391-413.

The 2nd International Electronic Conference on Remote Sensing (ECRS 2018), 22 March-5 April 2018; Sciforum Electronic Conference Series, Vol. 2, 2018

259 18. Klemas, Victor, Beach profiling and LiDAR bathymetry: An overview with case studies. Journal of Coastal 260

Research 2011, v. 27, p. 1019-1028.

261

© 2018 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).