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Abstract: Limited research has studied using Lidar to map coastal geomorphology. The purpose of 13 

this project was to build on existing research and develop an automated modeling approach to 14 
classify coastal geomorphology of barrier islands and test this at four sites in North Carolina. Barrier 15 
islands are shaped by natural coastal processes, such as storms and longshore sediment transport, 16 
as well as human influences, such as beach nourishment and urban development. An automated 17 
geomorphic classification model was developed to classify Lidar data into ten geomorphic types 18 
over four time-steps from 1998 to 2014. Tropical storms and hurricanes had the most influence on 19 
change and movement. On the developed islands, there was less influence of storms due to the 20 
inability of features to move because of coastal infrastructure. Beach nourishment was the dominant 21 
influence on developed beaches because this activity ameliorated the natural tendency for an island 22 
to erode. Understanding how natural and anthropogenic processes influence barrier island 23 
geomorphology is critical to predicting an island’s future response to changing environmental 24 
factors such as sea-level rise. The development of an automated model equips policy makers and 25 
coastal managers with information to make development and conservation decisions and the model 26 
can be implemented at other barrier islands. 27 
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1. Introduction 30 

Beautiful beaches and expensive properties are found on barrier islands which are features that 31 
parallel the coastline and protect the mainland from waves and storms. Their location and sandy 32 
composition make barrier islands both economically valuable and physically vulnerable. Studies 33 
have shown that over 5 years a barrier island can migrate over 100m and experience a 50% change in 34 
volume [1, 2]. Understanding the evolution of barrier island geomorphology can assist policy makers 35 
and coastal managers with decisions regarding future land use development. In North Carolina, the 36 
entire coastline is fronted by a chain of barrier islands. A typical barrier island system is composed 37 
of a gently sloping continental shelf, a sandy island, and a back-barrier marsh that extends into an 38 
estuary; and individual barrier islands are separated by tidal inlets [3]. 39 

Lidar data have been used to study coastal morphology [1, 2, 4, 5, 6, 7, 8]. In these studies, Lidar 40 
and other data (such as aerial photography) have been used to map shorelines and marshes, but to 41 
our knowledge there has not been a study that has developed an automated method for classifying 42 
all geomorphic types on a barrier island. This project developed a model that classifies barrier island 43 
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features from Lidar data and tested this approach on four islands in North Carolina (Figure 1). The 44 
second objective was to quantify change over time and correlate results with human and 45 
environmental processes. The North Carolina coast has a diverse chain of barrier islands. In 46 
particular, the barrier islands in the southern part of the state are distinctively different from those in 47 
the north, which is largely due to differences in subsurface geology and coastline orientation [9]. 48 

 49 
Figure 1. Study areas: Wrightsville Beach and Masonboro Island are located in New Hanover County 50 
in southern NC and Currituck and Corolla are in Currituck County in the north. 51 

2. Methods  52 

The following geomorphic feature types were studied: 1) Intertidal: region that is inundated 53 
daily due to tides; 2) Supratidal: region that is inundated occasionally due to astronomically high 54 
tides or severe weather events; 3) Dunes: linear features that run parallel to the shoreface and have 55 
the highest elevation; 4) Hummock: relic dune located behind the primary dune, lower elevation than 56 
dunes, but higher elevation than other surrounding features, and have a round shape;  5) Overwash: 57 
slightly elevated and flat areas located in the back barrier; 6) Swale: low depressions located between 58 
dunes and upland areas; 7) Channel: low depressions, cut by water, located adjacent to the supratidal 59 
region; and  8) Upland: flat portions of the barrier island, behind the primary dune. 60 

Fieldwork was conducted from May to December 2016 to collect ground control points (GCPs) 61 
to test model classification accuracy. Each study area was segmented by transects, cast 100m apart, 62 
perpendicular to the island centerline. GCPs were collected using a Trimble 5800 series Real Time 63 
Kinematic (RTK) GPS along 25 randomly selected transects per study area. Along each transect, the 64 
center of each geomorphic feature was recorded with position and elevation (X, Y, Z), feature type, 65 
and a GoPro Hero2 was used to collect video. The Trimble RTK has 10cm horizontal and 20cm vertical 66 
accuracy when the data is collected in "stakeout" mode. The GCPs were post-processed in Trimble 67 
Office, exported as CSV files and imported into ArcGIS. 68 

Lidar data was acquired from NOAA's Digital Coast using the Data Access Viewer tool 69 
(www.coast.noaa.gov/dataviewer/#/lidar/search/). Each dataset was examined for point spacing and 70 
accuracy and the highest quality data sets were used in this study. Different data sets were used for 71 
the northern and.southern areas because no single data covered all four areas. For Masonboro and 72 
Wrightsville, the Lidar dates were: 1998, 2005, 2010 and 2014 and for Currituck and Corolla: 2001, 73 
2005, 2009 and 2014. Research has tested the spatial resolution for examining volume change in 74 
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coastal features and determined that 1-2m is optimal [10] and the inverse distance weighted (IDW) 75 
interpolation technique was best for producing raster surfaces [11, 12]. After spatial sensitivity tests 76 
were conducted, Lidar ground returns were interpolated using IDW with a 10-point search and  77 
maximum 10 m radius to create Digital Elevation Models (DEMs) with 1x1m cell size. DEM accuracy 78 
was tested by comparing interpolated elevation values to field collected GCP data. An average 79 
elevation difference of less than 10cm was considered acceptable based on RTK accuracy and the time 80 
span from Lidar data collection to fieldwork (2 years). For developed areas (Wrightsville and 81 
Corolla), anthropogenic features were extracted from the ground return DEM prior to classifying the 82 
geomorphic features.  83 

The automated classification model consists of a series of steps that identified the unique 84 
characteristics of each type of geomorphic feature (Table 1). The model requires 4 inputs: 1) a DEM, 85 
2) a study area polygon, 3) an ocean front line used to determine marine water from estuarine water, 86 
and 4) MHHW and HAT tide height measurements (in meters) for the study area and corrected to 87 
NAVD88. The model result is a polygon dataset (feature class in an ArcGIS geodatabase) with 88 
attributes for each type of geomorphic feature in the study area.  89 

Table 1. Parameters to classify geomorphic features. 90 

Feature Classification Parameters  

Intertidal MSL < elevation <MHHW 

Supratidal MHHW < elevation <HAT 

Dune 40m TPI >=150, Shape Index <0.6, hummock intersecting dune dune = 

Hummock 12m TPI >=50, Shape index >0.6, Not intersecting a dune  

Overwash 200m TPI >50 

Swale 40m TPI <=-50, Not intersecting supratidal 

Channel 40m TPI <=-50, Intersecting supratidal 

Upland 200m TPI <=50 

Calculation of the Topographic Position Index (TPI) is a critical component to the model [13, 14]. 91 
The equation to calculate TPI is (1): 92 

TPI = ((DEM – Focal Mean) + (0.5)) (1) 

For each cell in the DEM, the focal mean was computed and compared to the elevation of the cell. A 93 
cell that is higher than its neighboring cells has a positive TPI value, while a cell that is lower than its 94 
neighboring cells has a negative TPI. The neighborhood distance for the focal mean depends on the 95 
size of the feature. Small features are identified using small neighborhoods and larger features are 96 
identified using larger neighborhoods [14]. Distance sensitivity tests were conducted and then 97 
optimized neighborhood sizes and TPI thresholds were determined for each geomorphic feature. 98 
Each TPI calculation has a radius (distance) and number of cells that define the neighborhood around 99 
each cell. 100 

The TPI index was scaled to the DEM for each of the study areas and was based on the mean 101 
and standard deviation of the focal statistics for each DEM. The scaling enables versatility across 102 
study areas so that the model uses the same TPI equations for each type of feature, but also 103 
standardizes the index values based on the DEM for each area. The equation to calculate the scaled 104 
TPI is (2): 105 

TPI (scaled) = int(((TPI-mean/stdev)*100) + 0.5) (2) 

The TPI classification identifies topographic peaks and valleys, thus swales and channels were 106 
grouped into the same class. These features were then segregated based on proximity to the 107 
supratidal areas. Channels are valleys where water cuts through the barrier island, usually 108 
perpendicular to the beach, and these features intersect the supratidal region. Swales are valleys 109 
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between dunes, usually parallel to the beach, so they are adjacent to dunes and do not intersect the 110 
supratidal areas. 111 

Overwash fans are found adjacent to the back barrier. So, the distance between overwash and 112 
ocean was calculated and areas that were greater than 0.5 x the standard deviation of the distance 113 
were classified as overwash and areas closer to the ocean were reclassified as either hummock or 114 
dune depending on the TPI value. Dunes and hummocks have similar TPI values so a shape index 115 
was used to differentiate them. Dunes are generally oval shaped while hummocks are circular. The 116 
equation to calculate the shape index is (3): 117 

Shape Index = (√Area/π) / (Shape Length / (2*π)) (3) 

Shape index ≤ 0.6 were classified as dunes and shape index > 0.6 were classified as hummocks. Not 118 
all dunes are long and linear so some were misclassified as hummocks. To address this, the distance 119 
between dunes and hummocks was calculated and hummocks that were located closer than 0.5 x 120 
stdev of the distance to dunes, were reclassified as dunes. 121 

Classified maps of each study area were analyzed for change over time. In the northern areas, 122 
the time steps were 2001-2005, 2005-2009, 2009-2014, and 2001-2014 and in the southern areas the time 123 
steps were 1998-2005, 2005-2010, and 2010-2014. Feature area, elevation and volume were computed 124 
for each time period. Several methods were used to capture feature movement. Oceanfront shoreline 125 
dynamics were compared using AMBUR [15]. Dune movement was calculated using Detect Feature 126 
Change and Near tools in ArcMap. Change statistics were calculated using polygon overlay and then 127 
cross-tabulation matrices were created. Statistically significant feature change was identified by 128 
comparing the expected and observed change [16, 17]. 129 

3. Results and Discussion 130 

The geomorphic classification model was developed in ESRI's ModelBuilder and run 16 times 131 
(four study areas and four dates). The fieldwork GCPs were comparable to the Lidar data and could 132 
therefore be used to assess the geomorphology classification results. Overall, model map accuracy 133 
was 76% (Masonboro), 77% (Corolla), 78% (Wrightsville), and 81% (Currituck). Changes were 134 
measured using: 1) elevation, volume, area and percentage of each feature type, 2) shoreline and dune 135 
movement, and 3) statistically significant changes using cross-correlation matrices. At all four study 136 
sites, intertidal and supratidal features had the lowest average elevation and dunes had the highest 137 
average elevation. Most features experienced minimal change in elevation over the time period (1998-138 
2014). Across all study areas, the largest change in volume was from 2005 to 2009/2010.  139 

Upland was the largest feature on Wrightsville and Currituck (30%) and on Corolla it was 40%. 140 
Alternatively, on Masonboro, intertidal and supratidal features were the largest area at ~50% of the 141 
island. Changes were less substantial on developed islands in comparison to undeveloped. For 142 
example, on Masonboro, the largest change was a 17% increase in the supratidal areas from 1998 to 143 
2005, whereas on Wrightsville supratidal features increased by 3%. On Masonboro and Wrightsville, 144 
from 1998 to 2005, most of the shoreline was eroding. The mean shoreline change was -3.1m/yr on 145 
Masonboro and -0.5m/yr on Wrightsville, with 72% of the shoreline eroding on Masonboro and 52% 146 
of the shoreline eroding on Wrightsville. Shoreline accretion rates increased and erosion rates 147 
decreased from 2005 to 2010 when the mean shoreline change rate was -1.1m/yr on Masonboro and 148 
+0.5m/yr on Wrightsville. From 2010 to 2014, the shoreline was again dominated by erosion. In 149 
contrast, the northern region was accreting from 2001 to 2005 when the net shoreline change was 150 
+0.6m/yr at Currituck and +0.8m/yr at Corolla. Currituck had 44% of the shoreline eroding and 151 
Corolla had 22% resulting in areas of both erosion and accretion. From 2005 to 2009, the majority of 152 
the shoreline was accreting with the mean shoreline change of +1.5m/yr on Currituck and +2.7m/yr 153 
on Corolla. From 2009 to 2014, almost all (more than 90%) of the shoreline experienced a large amount 154 
of erosion with the mean shoreline change of -3.4m/yr on Currituck and -2.7m/yr on Corolla.  155 

Movement/migration of dune features was calculated by measuring the difference in spatial 156 
position through time and was defined as: movement (3m≤ distance ≤25m), no change (<3m), deletion 157 
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(feature completely eroded), new dune (>25m). On Masonboro, the largest amount of movement and 158 
the creation of new dunes was from 2005 to 2010. On Wrightsville, the largest amount of dune 159 
movement was from 2010 to 2014, while the largest amount of deletion was from 2005 to 2010. On 160 
Currituck, a similar amount of movement occurred from 2001 to 2005 and 2010 to 2014. The largest 161 
amount of deletion was from 2005 to 2009. On Corolla, the largest amount of movement and creation 162 
of new features was from 2009 to 2014, while the largest amount of deletion was from 2005 to 2009. 163 
The mean dune movement ranged from 1.1m (Masonboro from 2010 to 2014 and Currituck from 2009 164 
to 2014) to 3.9m (Wrightsville from 2005 to 2010) and direction was consistently to the southwest. 165 

Polygon overlay and cross-tabular change matrices were generated for each time period. Net 166 
gain and loss (in area) was computed per feature type and time period. Significant change was 167 
calculated by comparing observed and expected change [16]. On Masonboro and Wrightsville, the 168 
largest significant changes were supratidal and intertidal. Less significant changes occurred in the 169 
northern region (Currituck and Corolla) and the most recent time period had the least change.  170 

Regional differences between the north (Currituck and Corolla) and the south (Masonboro and 171 
Wrightsville) were much larger than differences between developed and undeveloped barrier 172 
islands. There are two primary reasons why the north is different from the south: geologic setting 173 
and beach nourishment. Developed islands had less change and dune movement than undeveloped 174 
islands because development prevents natural processes such as washover and roll-over. This results 175 
in features on the developed islands being “locked” in place which creates increased shoreline 176 
erosion and island narrowing [9]. 177 

Storms were a dominant process influencing the four study areas. Post-storm AMBUR analysis 178 
computed the average shoreline change of -3m/yr (Masonboro), -0.45m (Wrightsville), -3.4m/yr 179 
(Currituck), and –2.7m/yr (Corolla). Feature change analysis documented dune erosion and the 180 
transition of dunes to supratidal and intertidal and channels. On the undeveloped islands, there was 181 
an increase in overwash. In the southern study areas, the stormiest period was 1998 to 2005 when the 182 
area was impacted by eight major storms, four of which were hurricanes. Only a few small storms 183 
impacted the northern study areas between 2001 and 2009, and then in 2011 Hurricane Irene, a 184 
category 3, passed directly through the region, likely responsible for the changes observed on 185 
Currituck and Corolla. 186 

Beach nourishment temporarily increases the amount of sediment and overall elevation of the 187 
oceanfront shoreline (White and Wang, 2003). However, nourishment has been shown to result in the 188 
largest amount of storm induced erosion [11]. Beach nourishment took place at Masonboro and 189 
Wrightsville in 2006 and 2010, just prior to the Lidar data collection. Shorelines accreted from 2005 to 190 
2010 with an average shoreline change rate of +1.2m/yr at Masonboro and +0.5m/yr at Wrightsville. 191 
This accretion was followed by a period of high erosion from 2010 to 2014: -1.7m/yr at Masonboro 192 
and -3.5m/yr at Wrightsville. The location of accretion corresponded to the areas of highest erosion. 193 

4. Conclusions 194 

One of the benefits of using Lidar data for studying coastal systems is it provides elevation and 195 
in sandy coastal environments, where many different features have similar reflectance properties, 196 
features can be distinguished based on topography [18]. This study developed an automated model 197 
to classify barrier island geomorphic features. On average, the model accuracy was 80% which is 198 
acceptable given that it can be difficult to precisely measure the boundaries of different types of 199 
features that gently vary over the terrain. Historical Lidar can be used to analyze change through 200 
time and geospatial techniques can measure the distance and direction that features have moved. The 201 
model was tested at undeveloped and developed islands and islands with different geologic settings. 202 
When storms have occurred, they are the dominant force influencing change. In between stormy 203 
periods, other activities, such as beach nourishment, can temporarily increase the oceanfront 204 
elevation which later leads to the greatest rates of erosion. Lastly, urban development reduces the 205 
amount of change because natural processes are prohibited from moving dunes and adjacent areas. 206 
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