

Vertical Segmentation of Airborne LiDAR for Select Australian Vegetation Communities

John Tasker and Stuart Phinn

Remote Sensing Research Centre, School of Earth and Environmental Sciences, The University of Queensland, St Lucia, Queensland, Australia

Overview

- 1. Background & Significance
- 2. Research Aim & Objectives
- 3. Study Sites
- 4. Methodology
- 5. Results Vertical Segmentation
- 6. Results Point Density Ratios
- 7. Results Classification Comparisons
- 8. Summary

Background – Vertical Vegetation Structure

- Key vegetation classification criteria in Australia
- Difficult to characterise sub-canopy structure
- Critical applications for ecology & vegetation management

Background – LiDAR

- Light Detection and Ranging (LiDAR)
- Generates a 3D representation of an environment
- Key Types:
 - Airborne Laser Scanner (ALS)
 - Terrestrial Laser Scanner (TLS)
- Established technology for forestry & vegetation management

Photo: IAN (graphics)

Significance & Research Aim

- High spatial resolution LiDAR & field data increasingly available
- Australian vegetation communities unique & challenging
- Limited studies using ALS data in Australian context

Research Aim

To assess the ability of high spatial resolution LiDAR data to accurately map Australian vegetation communities.

Research Objectives

- **1. Gather** and prepare datasets across a range of vegetation structural forms, from low shrubland to tall closed forest
- 2. Process LiDAR datasets to derive point density surfaces
- **3. Classify** processed LiDAR datasets to map individual and stand based vegetation features
- **4. Assess** differences between existing vegetation classifications and vertical point density derived classifications

Sensors & Data

ALS

- RIEGL Q560, flown at ~300m on N-S flight-lines
- TERN AusCover data (2012-2013)

Site Name	Point Density	Spacing	Area Covered
Chowilla	54.33 pts/m ²	0.14 m	26 km ²
Litchfield	28.87 pts/m ²	0.19 m	26 km ²
Karawatha	45.16 pts/m ²	0.15 m	13 km ²
Robson Creek	50.68 pts/m ²	0.14 m	26 km ²

Chowilla (SA) – Mallee Woodland/Scrub

Litchfield (NT) – Tropical Savanna

Robson Creek (QLD) – Tropical Rainforest

Chowilla

20m

10m

Litchfield

Robson Creek

(a)

(b)

Tiller Buckland on the

Methodology

Data Preparation

- Download
 ALS data
 (TERN
 AusCover)
- Preparation using LAStools
- CHM & coverage mapping

Processing

- Vertical segmentation using LAStools
- Point density ratio calculations using QGIS

Classification

- ISODATA classification of segmented data
- Specht classification using CHM & coverage data

Analysis

- Comparison:
 - ISODATA vs Specht
 - ISODATA vs TLS PAVD

Methodology – Data Preparation

Raw flight lines

Pre-processed point cloud tile

20 m

Methodology - Processing

Methodology – Classification & Accuracy

Results – Vertical Segmentation

- Data quality
 - Point densities
 - Vertical & horizontal accuracies
- Spatial resolutions
 - 1 2 m³ segments
- Data size / software capacity
 - RAM limitations
 - LAStools functions

Karawatha Segmentation Visualisation

Results – Point Density Ratios

- Adaptive point density ratios
 - Improved identification of subcanopy vegetation
- Standard point density ratios
 - Effective for structurally simple vegetation
- Segment point density requirements

Chowilla - Specht

Shrub [3m]

Projection: Transverse Mercator Datum: GDA 1994 Units: Metre

Raw data sourced from TERN AusCover, with processing & analysis using LASTools, QGIS & ENVI

Produced by John Tasker (2017)

Bare ground Shrub [4m] Ground cover Shrub [5m] Open shrub [2m] Low Trees [+6m] Shrub [2m] Shrub [2.5m]

Specht Classification Coordinate System: GDA94 MGA Zone 56 Projection: Transverse Mercator Datum: GDA 1994 Units: Metre Raw data sourced from TERN AusCover, with processing & analysis using LASTools, QGIS & ENVI

Produced by John Tasker (2017)

Litchfield - Exploratory 0 500 1000 m

LITCHFIELD **Exploratory Classification**

Coordinate System: GDA94 MGA Zone 56 Projection: Transverse Mercator Datum: GDA 1994 Units: Metre

Raw data sourced from TERN AusCover, with processing & analysis using LASTools, QGIS & ENVI

Produced by John Tasker (2017)

Litchfield - Specht

LITCHFIELD Tall shrubland Specht Classification Unknown TS/LW Tall open-forest Bare Low woodland Coordinate System: GDA94 MGA Zone 56 Low open-shrubland Projection: Transverse Mercator Closed-scrub Woodland Tall open-shrubland Datum: GDA 1994 Tall woodland Units: Metre TOS/LOW Open-heath Low closed-forest Low open-woodland Raw data sourced from TERN AusCover, Open-scrub with processing & analysis using Open-woodland OSC/LOF Tall closed-forest LASTools, QGIS & ENVI Tall open-woodland Low open-forest Low shrubland

Open-forest

Closed-heath

Closed-forest

CSC/LCF

Produced by John Tasker (2017)

Karawatha - Exploratory Ø

0 250 500 750 1000 m

KARAWATHA Exploratory Classification

Coordinate System: GDA94 MGA Zone 56 Projection: Transverse Mercator Datum: GDA 1994 Units: Metre

Raw data sourced from TERN AusCover, with processing & analysis using LASTools, QGIS & ENVI

Produced by John Tasker (2017)

Legend Exploratory Classification Low tree [8m]

Karawatha - Specht

KARAWATHA Specht Classification Unknown TS/LW Bare Coordinate System: GDA94 MGA Zone 56 Low open-shrubland Projection: Transverse Mercator Woodland Tall open-shrubland Datum: GDA 1994 Units: Metre TOS/LOW Open-heath Low open-woodland Raw data sourced from TERN AusCover, Open-scrub with processing & analysis using Open-woodland OSC/LOF LASTools, QGIS & ENVI Tall open-woodland

Produced by John Tasker (2017)

ROBSON CREEK Exploratory Classification

Coordinate System: GDA94 MGA Zone 56 Projection: Transverse Mercator Datum: GDA 1994 Units: Metre

Raw data sourced from TERN AusCover, with processing & analysis using LASTools, QGIS & ENVI

Produced by John Tasker (2017)

Robson Creek - Specht

ROBSON CREEK Specht Classification Coordinate System: GDA94 MGA Zone 56 Projection: Transverse Mercator Datum: GDA 1994 Units: Metre

Raw data sourced from TERN AusCover, with processing & analysis using LASTools, QGIS & ENVI

Produced by John Tasker (2017)

TS/LW Tall open-forest Bare Low woodland Closed-heath Low open-shrubland Woodland Closed-scrub Tall open-shrubland CSC/LCF Tall woodland TOS/LOW Open-heath Low closed-forest Low open-woodland Open-scrub Closed-forest Open-woodland OSC/LOF Tall closed-forest Tall open-woodland Low open-forest Low shrubland

Tall shrubland

Open-forest

Results – Classification Comparisons

• Exploratory LiDAR-derived classifications

- Classification of full vegetation structure (ground to canopy)
- Characterisation of fine structural patterns (1-2 m segments)
- Specht classifications
 - Primarily classified canopy vegetation
 - Overlap class for shrub/trees
- Site-averaged PAVD data
 - Weak similarities (sample site vs whole site)
 - Additional analysis required

Summary

- Vertical segmentation is an applicable method to characterise Australian vegetation communities
 - Fine spatial resolutions
 - Diverse range of vegetation communities
- Point density ratio calculations
 - Standardise ALS point cloud datasets
 - Compensate for canopy return bias
- Further work required to refine methods and processes

QUESTIONS

John Tasker

j.tasker@uq.edu.au

