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Abstract: Indian Space Research Organisation's SCATSAT-1 is a continuity mission for Oceansat-2 8 
Scatterometer. The sensor works in Ku-band (13.515 GHz) similar to the one flown on-board 9 
Oceansat-2. It provides backscattering coefficient over the globe and wind vector data products over 10 
the oceans that are useful for weather forecasting, cyclone detection and tracking services. Besides 11 
backscattering coefficient (sigma nought), two other important parameters namely, Gamma nought 12 
(obtained from backscattering coefficient) and Brightness temperature (obtained from scatterometer 13 
noise measurement) are given as the Level-4 data products archived at the ISRO’s Meteorological & 14 
Oceanographic Satellite Data Archival Centre. We used these three parameters both in horizontal 15 
and vertical polarizations for the Antarctic region (South Polar) to perform, first, a principal 16 
component analysis. Then, we used the first three principal components explaining the largest 17 
variability in the data set to perform an unsupervised ISODATA clustering classification to estimate 18 
the regions of sea ice around Antarctica. The derived sea ice extent through this method is compared 19 
with other popular sea ice extent products available elsewhere. 20 

Keywords: SCATSAT-1; Antarctic sea ice extent; principal component analysis; ISODATA 21 

classification 22 
 23 

1. Introduction 24 

With an extreme variability of about 20 Million km2 (during austral winter) to about 3 Million 25 
km2 (austral summer) (Comiso, 2003; Gloersen et al., 1992), Antarctic sea ice plays as a sensitive 26 
indicator of climate change and a modulator of the global climate system (Lubin and Massom, 2006).  27 

Formation of sea ice in autumn from saline ocean water is associated with heat losses and a 28 
change in salinity fluxes, which help in formation of Antarctic Deep and Bottom water (Lubin and 29 
Massom, 2006). It is the driver of global thermohaline circulation. Moreover, during melt season, the 30 
melting sea ice introduces a layer of fresh-water which helps in stabilizing mixed layer and also in 31 
decreasing its depth (Timmermann et al., 2001), thereby, moderating deep ocean convection 32 
stabilizing large-scale global ocean thermohaline circulation patterns (Aagard and Carmack, 1989; 33 
Martinson and Iannuzzi, 1998). 34 

A microwave sensor has little sensitivity to cloud cover and it is not affected by day-night 35 
change. Because of these properties, use of microwave sensors (both active (e.g., scatterometer etc.) 36 
as well as passive (e.g., radiometer) for observing Polar Regions is the most convenient form of 37 
satellite-based remote sensing of these regions. Antarctic sea ice cover has been derived using both 38 
active (Remund and Long, 1999, 2014, etc.) and passive sensors (Cavalieri et al., 1997; Comiso, 2003, 39 
etc.). 40 

In this study, we have used the multivariate technique Principal Component Analysis (PCA) 41 
and K-means (ISODATA) classification on the enhanced resolution Level-4 data from the recently 42 
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launched Indian Space Research Organisation’s SCATSAT-1 to derive sea ice extent (SIE) around 43 
Antarctica for the period 2016-17. The derived extents are then compared with passive microwave 44 
derived sea ice extents and with SAR data for some regions around Antarctica. 45 

The paper has been arranged in the following manner. Section 2 presents the data used in the 46 
study, while Section 3 gives details about the methodology employed and the generation of SIE from 47 
SCATSAT-1. Results and discussions including the comparisons with passive microwave and SAR 48 
data are given in Section 4. The paper is then concluded with some remarks and possible future scope 49 
in Section 5. 50 

2. Datasets 51 

SCATSAT-1, launched in September, 2016, is a mini-satellite carrying a Ku-band (13.515 GHz) 52 
scatterometer, same as that was in Oceansat-2. It is a conically scanning, dual-pencil beam 53 
scatterometer with the outer beam vertically polarized and the inner, horizontally polarized. The 54 
instrument was developed primarily to provide wind data for weather forecast and cyclone 55 
detection. However, it has applications over the Polar Regions for ice studies.  56 

Even though the highest nominal resolution of the wind vector cell is 25 km (ISRO, 2018), Level-57 
4 data products have spatial resolutions as high as ~2 km. There are altogether six Level-4 data 58 
products generated at the moment. The datasets used in this study is the SouthPolar24 both in vertical 59 
and horizontal polarization. This dataset is generated from Level-1B data using both ascending and 60 
descending passes of the backscattering coefficient (sigma-0) and other radiometric parameters for 61 
the past 24-hr (more details about the product in the manual of SCATSAT1 DP Team, 2017). The 62 
parameters containing in this Level-4 data are sigma-0 (σ0), gamma-0 (ϒ0) and brightness 63 
temperature (Tb). The dataset is archived at the ISRO’s data archival centre, Meteorological & 64 
Oceanographic Satellite Data Archival Centre, MOSDAC (https://mosdac.gov.in/).  65 

The derived sea ice extents (SIE) are compared with the extents obtained from passive 66 
microwave observations. Advanced microwave scanning radiometer-2 (AMSR2) on-board the Japan 67 
Aerospace Exploration Agency- JAXA’s Global Change Observation Mission-Water (GCOM-W or 68 
“Shizuku”) satellite constantly observes the sea ice regions of the Earth. Remote Sensing of Polar 69 
Regions research group at the Institute of Environment Physics (IUP), University of Bremen, 70 
generates sea ice concentration (SIC) data for both the Polar Regions. The SIC data are derived at 71 
3.125 km and 6.25 km resolution respectively using the ARTIST Sea Ice algorithm (Spreen, et al., 2008) 72 
and the Bootstrap algorithm (Comiso, 1995). We use 15% SIC in both the data products as the 73 
threshold to designate a pixel as sea ice [Zwally et al., 1983; Comiso and Nishio, 2008] and generate 74 
sea ice extent maps using this threshold. 75 

The third dataset that we have used here is the Sentinel-1A/1B SAR Level-1 Extra Wide (EW) 76 
Ground Range Detected (GRD) swath imageries at medium resolution ~93×87 m (ESA Sentinel User 77 
Guide, 2018). The imageries are downloaded from the Polar View data archival website 78 
(www.polarview.org). Polar View is an international consortium of sea ice experts from nine 79 
countries across Europe and Canada, providing near real-time sea ice information.  80 

Moreover, ice chart shapefiles from the U.S. National Ice Center/Naval Ice Center 81 
(www.natice.noaa.gov/Main_Products.htm) are also downloaded for a few days to compare with our 82 
SCATSAT-1 sea ice maps. 83 

To remove ambiguous sea ice signatures coming at the locations where historically sea ice is 84 
never expected to exist, we have created a maximum boundary beyond which sea ice detection is not 85 
carried out. This mask is created using the Southern Hemisphere sea ice occurrence probability 86 
(SIOP) dataset (Rajak et al., 2015) archived at the MOSDAC. This dataset is produced using passive 87 
microwave daily-averaged sea ice concentration data from 1978 through 2012. We define the 88 
maximum sea ice boundary using those pixels which have been classified as sea ice at least 3 times 89 
in the given period of 35 years (3.5 years correspond to a probability value of 10 for this given dataset). 90 
This mask, which is in essence the climatologically maximum Antarctic sea ice edge, is applied to all 91 
the sea ice maps generated from all the three source datasets viz., SCATSAT-1, ASI and BT. 92 
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3. Methodology 93 

3.1. Principal component analysis 94 

It has been shown by Rothrock and Thomas (1988) and Piwowar and LeDrew (1996), etc. that 95 
the technique of PCA can be extensively used to study sea ice in the Arctic. Moreover, Lillesand et al. 96 
(2016) described the usefulness of PCA in analysing remotely sensed imagery.  97 

PCA is a very popular multivariate statistical technique. It is traditionally used as a dimension 98 
reduction tool to reduce from a large set of variables to a small set. Its main feature is to extract 99 
important information about the given data sample and represent a set of new orthogonal variables, 100 
called principal components (Abdi and Williams, 2010). In case of multiband remote sensing data, 101 
this analysis helps in identifying distinct spatial and spectral patterns (Piwowar and LeDrew, 1996).  102 

In this study, we perform PCA over the three scatterometer parameters mentioned above in both 103 
horizontal and vertical polarizations. Therefore, there are altogether 6 parameters (3 parameters×2 104 
polarizations). Six different regions around Antarctica where different features of ice/ocean classes 105 
are expected to exist, are selected (Fig. 1). Ten dates chosen for PCA are 1 December, 2016, 14 106 
December, 2016, 30 December, 2016, 1 February, 2017, 15 February, 2017, 28 February, 2017, 2 May, 107 
2017, 16 May, 2017, 30 May, 2017 and 7 October, 2017. There are 240000 usable data points per 108 
parameter per day from all the six regions. Using Minitab, PC coefficients are generated from the six 109 
input parameters (Table 1) and the Scree plot is given in Fig. 2. Using these coefficients, we generate 110 
the required Principal Components. Even though, the Scree plot suggests that only two components 111 
are good enough to explain maximum variability of the given data sample, we have retained three 112 
components in this analysis so that we can generate an RGB image. 113 

A sample of the generated principal components for a particular day is given in Fig. 3 top panel 114 
(a-c). The first principal component (PC1) explains the largest percentage of total variance (Lillesand 115 
et al., 2016) followed by PC2 and PC3. The false-colour composite (FCC) image, shown at the bottom 116 
of Fig. 3c, is generated using these three principal components as the input channels of red, green 117 
and blue respectively. In this FCC, regions with pinkish and greyish shades represent the sea ice area 118 
around Antarctica while the green and black shades represent ocean. The FCC RGB image is 119 
transformed to hue, saturation, value (HSV) colour space (Fig. 3d) using the HSV transformation in 120 
ENVI software. This process replaces the value band with the high-resolution image, then it 121 
automatically resamples the hue and saturation bands to the high-resolution pixel size using cubic 122 
convolution technique. And ultimately, there is the final transformation of the image back to RGB 123 
colour space. The output RGB images will have the pixel size of the input high-resolution data.3.1. 124 
Subsection 125 

3.2. Unsupervised classification of image: 126 

Next step is to segregate this sea ice region from the ocean pixels. To achieve this, we perform 127 
an unsupervised image classification because there are no a priori training data to classify sea 128 
ice/ocean pixels. An unsupervised classifier does not require training data and the classification is 129 
achieved by aggregating unknown pixels into different classes through natural grouping or 130 
clustering. The basic idea is that pixels belonging to a specific feature type should have nearby values 131 
in the measurement space compared to those pixels of different classes which should be well 132 
separated (Lillesand et al., 2016).  133 

Here, we have used the multivariate statistical analysis technique in ArcGIS, known as the Iso-134 
cluster unsupervised classification using the HSV sharpened image described above. This technique 135 
is based on the Iterative Self-Organizing Data Analysis Technique (ISODATA) (Tou and Gonzalez, 136 
1974; Lillesand et al., 2016) algorithm of k-means clustering and additionally, maximum likelihood 137 
classification. In addition to this, a generalization analysis technique (Majority filter) that replaces 138 
cells in a raster based on the majority of their contiguous neighbouring cells. This helps in cleaning 139 
up of small erroneous data in the raster. Finally, sea ice boundary mask for the particular day, is then 140 
applied, thereby, reducing the ambiguous signals in regions where sea ice is not expected to exist.  141 
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The sea ice map for 3 December, 2016, determined from SCATSAT-1 is shown in Fig. 4. The blue 142 
solid line is the sea ice boundary estimated from passive microwave data obtained by identifying 143 
pixels having more than 15% sea ice concentration. The formation of polynyas at different places 144 
around Antarctica is very well picked up by the method described here. This feature will be used in 145 
future for studying Antarctica polynya dynamics, particularly, the Weddell Sea polynya. Detailed 146 
discussion on the comparison is given in the next section. 147 

4. Comparison with passive microwave and SAR data 148 

4.1.Passive microwave data 149 

For the purpose of comparison, the sea ice products viz., SCATSAT-1, ASI and BT sea ice maps 150 
are projected into South Polar stereographic 6.25 km spatial resolution (BT’s resolution- the coarsest 151 
of the three) using the layer stacking tool in ENVI.  152 

Forty eight dates from six different months (a few days in the beginning, middle and the end of 153 
each month) corresponding to one complete life-cycle of sea ice in the Antarctic oceans are chosen for 154 
comparative analysis. The sea ice extents derived from the above mentioned three methods for these 155 
48 days are shown in Fig. 5. The root mean squared error for (i) SCATSAT-1 Vs Bootstrap and (ii) 156 
SCATSAT-1 Vs ASI are ~0.4 Million Sq. km in both the cases. Moreover, there is a high degree of 157 
correlation (r = 0.99) between the sea ice extents in both the comparisons. 158 

In order to test the statistical significance of the results, we performed first the Fisher’s F-test 159 
(Table 2) to check the variance between the pair of datasets (SC1 Vs BT and SC1 Vs ASI). Since the 160 
calculated F-value is smaller than the critical F-value, we accept the null hypothesis that the datasets 161 
have statistically equal variance. This test acts as a precursor for the next statistical test, the Student’s 162 
t-test to check the differences in population means of these datasets. We perform two sample, two-163 
tail t-test for comparing (a) SCATSAT-1(SC1) Versus Bootstrap (BT) and (b) SC1 Versus ASI. The t-164 
test statistics are given in Table 3 for both the cases. Absolute values of the calculated statistic (‘t stat’, 165 
in the tables) are smaller than the standard critical values for two-tail test (‘t Critical two-tail’). Hence, 166 
we cannot reject the null hypothesis that is, the population means do not differ significantly. It may 167 
be noted here that all the statistical tests are done at 95% confidence level. Moreover, p-values are 168 
larger than 0.05 (the predefined significant level, alpha for the statistical tests). 169 

To further introspect into the matter, we perform a pixel-wise accuracy mapping between the 170 
estimated SCATSAT-1 SIE and the other two estimates (Fig. 6). We map each pixel classified as either 171 
ocean or sea ice in the Bootstrap or ASI imagery against the pixel in the SCATSAT-1 imagery after re-172 
projecting them into one common projection with a spatial resolution of 6.25 km. In the figure, ‘Oc’ 173 
represents ocean and ‘Ic’, sea ice. Hence, SC1_Oc:BT_Oc represents the mapping accuracy for 174 
classifying pixels classified as ocean in Bootstrap algorithm as ocean in SCATSAT-1 estimation. 175 
Similarly, SC1_Ic:BT_Ic represents the sea ice classification accuracy in both the estimates. Number 176 
of pixels taken for comparison on each day is also plotted denoted by the ‘crosses’. There is an overall 177 
ice-to-ice mapping accuracy of 96% in SC1-BT and ~99% in SC1-ASI comparison. As shown in the 178 
plots, there are, however, some misclassifications as well (e.g., SC1_Oc:BT_Ic). Nonetheless, they are 179 
only ~10% or less in most of the cases. 180 

4.2. SAR data 181 

We process the Sentinel-1 EW GRD data in the Sentinel Application Platform or SNAP. The 182 
detailed process is as follows:  183 

1) Creation of a calibration look-up table for conversion of DN values to σ0,  184 
2) Radiometric correction for removal of noise 3) speckle filtering using Lee-sigma filter,  185 
3) Radiometric calibration to convert DN values to the corresponding σ0 using the look-up table, 186 

and  187 
4) Geometric correction (ellipsoid correction) and re-projection to NSIDC South polar 188 

stereographic. 189 
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For this study, we have chosen three sites in East Antarctica (Fig. 7). The white solid line is the 190 
sea ice edge estimated by our SCATSAT-1 algorithm for 20 January, 2018. It is apparent our sea ice 191 
edge is closely matching the SAR imageries. However, it may be noted here that the SAR scenes are 192 
one-minute observation of the region at a given local time and our SCATSAT-1 data are daily-193 
averaged. Therefore, there will be some differences in the observation even though the “actual” sea 194 
ice edge looks similar to our estimated edge. 195 

4.3. Ice chart shapefiles 196 

To complete the comparative analysis, we check the effectiveness of SCATSAT-1 sea ice 197 
algorithm in comparison to the ice edge obtained from an operational ice chart (Fig. 8). We have 198 
compared the results for a few days but shown here the comparison for 20 January, 2018.  199 

The US NIC ice edge chart identifies the sea ice pack shown in red as those pixels having 8-200 
10/10ths or greater of sea ice, while the Marginal Ice Zone (MIZ) where there are lesser concentration 201 
of sea ice are shown in yellow. MIZ are the regions where ambiguities in the detection of sea ice edge 202 
using satellite remote sensing data can occur. This is due to the mixing of electromagnetic signatures 203 
returning from both sea ice and open ocean and the errors can be even larger during summer melting 204 
season of sea ice (Comiso and Nishio, 2008).  205 

It is apparent from this analysis that our SCATSAT-1 sea ice edge is in close match with the sea 206 
ice pack region as identified in the ice chart. We may notice distinctly that the Ross Sea polynya is 207 
clearly identified in our sea ice detection algorithm as it is in the ice chart. 208 

5. Conclusion 209 

We made an attempt to develop an algorithm for the detection of sea ice in the Southern Oceans 210 
and to estimate the austral sea ice extent. The algorithm used the Indian Space Research 211 
Organisation’s SCATSAT-1 enhanced resolution data from the first year of operation at a spatial 212 
resolution of 2.225 km.  213 

The algorithm used a combination of techniques such as the Principal Component Analysis and 214 
image classification technique (ISODATA k-means classifier). The sea ice estimates (edge and extent) 215 
from this method are found to have a high degree of correlation with other available high quality sea 216 
ice products. Pixel-wise accuracy mapping reveals there is an overall ice-to-ice mapping accuracy of 217 
about 99% when compared with ARTIST Sea Ice (ASI)-derived sea ice extent and 96% when 218 
compared with Bootstrap. Ocean-to-ocean mapping accuracy is also high (in excess of 90%).  219 

Moreover, in comparison with high resolution SAR and ice chart data, the algorithm tends to 220 
perform satisfactorily. 221 

In future, the algorithm will be applied for the detection of important Antarctic polynyas such 222 
as those occurring in Weddell Sea and Ross Sea, to study their dynamics.Acknowledgments: All 223 
sources of funding of the study should be disclosed. Please clearly indicate grants that you have 224 
received in support of your research work. Clearly state if you received funds for covering the costs 225 
to publish in open access.  226 

Author Contributions: This work is funded by the collaborative ISRO-NIT Manipur science project, “Signature 227 
analysis, monitoring ice calving events and marginal changes using SCATSAT-1 data over Antarctica”. The 228 
authors, Rajkumar Kamaljit Singh, Khoisnam Nanaoba Singh and Mamata Maisnam, thank the Space 229 
Applications Centre-ISRO, India for this project. Special acknowledgement goes to Mr. Shashikant Patel, former 230 
JRF SAC-ISRO, for his help on using ArcGIS. 231 

Conflicts of Interest: The authors declare no conflict of interest. 232 

References 233 

1. Aagard, K. and E.C. Carmack, 1989: The role of sea ice and other fresh water in the Arctic circulation, 234 
Journal of Geophysical Research, 94(C10), pp. 14485–14498. 235 



The 2nd International Electronic Conference on Remote Sensing (ECRS 2018), 22 March–5 April 2018;  
Sciforum Electronic Conference Series, Vol. 2, 2018 

6 

 

2. Abdi, H., and L.J. Williams, 2010: Principal component analysis, Wiley Interdisciplinary Reviews: 236 
Computational Statistics, pp. 433-459, DOI: 10.1002/wics.101. 237 

3. Cavalieri, D. J., P. Gloersen, C. L. Parkinson, , J. C. Comiso, and H. J. Zwally, 1997: Observed hemispheric 238 
asymmetry in global sea ice changes. Science, 278, pp. 1104–1106 239 

4. Comiso, J.C., 1995: SSM/I Concentrations Using the Bootstrap Algorithm, NASA Reference Publication 240 
1380. 241 

5. Comiso, J.C., 2003: Large-scale characteristics and variability of the global sea ice cover. In: D. Thomas and 242 
G. Dieckmann (eds.), Sea ice: An introduction to its physics, chemistry, biology and geology, Blackwell 243 
Scientific, Oxford, UK, pp. 112–142. 244 

6. Comiso, J.C., and F. Nishio, 2008: “Trends in the sea ice cover using enhanced and compatible AMSR-E, 245 
SSM/I, and SMMR data”, Journal of Geophysical Research, Vol-113 (C02S07), doi:10.1029/2007JC004257. 246 

7. Comiso, J.C., and F. Nishio, 2008: Trends in the sea ice cover using enhanced and compatible AMSR-E, 247 
SSM/I, and SMMR data, Journal of Geophysical Research, Vol. 113(C02S07), doi:10.1029/2007JC004257. 248 

8. ESA Sentinel User Guide, 2018: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-249 
sar/resolutions/level-1-ground-range-detected (Online. Accessed on January, 2018) 250 

9. Gloersen, P.; W.J. Campbell; D.J. Cavalieri; J.G. Comiso; C.L. Parkinson and H.J. Zwally, 1992: Arctic and 251 
Antarctic sea ice, 1978-1987: Satellite passive-microwave observations and analysis (NASA special 252 
publication SP-511), NASA Goddard Space Flight Center, Greenbelt, MD, pp 290 253 

10. ISRO, 2018: “SCATSAT-1 Wind Products (BETA Version) Released”, https://www.isro.gov.in/SCATSAT-254 
1-wind-products-beta-version-released. Online. Accessed on 22 Jan. 18 255 

11. Lillesand, T.M., R.W. Kiefer, and J.W. Chipman, 2016 (eds.), 1987: Remote Sensing and Image 256 
Interpretation, John Wiley & Sons, New York, pp. 756 257 

12. Lubin, D and R. Massom (eds.), 2006: Sea ice. In: Polar Remote Sensing, Vol-1-Atmosphere and Oceans, 258 
Springer-Praxis, Germany, pp. 309–609 259 

13. Piwowar, J.M., and E.F. LeDrew, 1996: Principal components analysis of Arctic ice conditions between 1978 260 
and 1987 as observed from the SMMR data record, Canadian Journal of Remote Sensing, Vol. 22(4), pp. 261 
390–403 262 

14. Rajak, D.R.; R.K. Kamaljit Singh; P. Jayaprasad; S.R. Oza; R. Sharma and R. Kumar, 2015: Sea ice occurrence 263 
probability data and its applications over the Antarctica, Journal of Geomatics, Vol. 9(2), pp. 193–197 264 

15. Remund, Q.P. and D.G. Long, 1999: Sea ice extent mapping using Ku band scatterometer data, Journal of 265 
Geophysical Research, 104(C5), pp. 11,515–11,527 266 

16. Remund, Q.P. and D.G. Long, 2014: A decade of QuikSCAT scatterometer sea ice extent data, IEEE 267 
Transactions on geoscience and remote sensing, 52(7), pp. 4281–4290 268 

17. Rothrock, D.A. and D.R. Thomas, 1988: Principal component analysis of satellite passive microwave data 269 
over sea ice, Journal of Geophysical Research, Vol. 93(C3), pp. 2321–2332 270 

18. SCATSAT1 DP Team, 2017: SCATSAT-1 level 4 data products format document, MDPD/SIPG, Space 271 
Applications Centre-ISRO, Ahmedabad, India, SC1/DP/L4FORMAT-DOC/V1.1/JUL2017 272 

19. Spreen, G., L. Kaleschke, and G. Heygster, 2008: Sea ice remote sensing using AMSR-E 89 GHz channels 273 
Journal of Geophysical Research, Vol. 113(C02S03). 274 

20. Timmerman, R., A. Beckmann and H.H. Helmer, 2001: The role of sea ice in the fresh-water budget of the 275 
Weddell Sea, Antarctica, Annals of Glaciology, 33, pp. 419–424 276 

21. Tou, J.T., and R.C. Gonzalez, 1974: Pattern recognition principles, Addison-Wesley, London 277 
22. Zwally, H. J., J.C. Comiso, C.L. Parkinson, W.J. Campbell, F.D. Carsey, and P. Gloersen, 1983: Antarctic sea 278 

ice 1973 –1976 from satellite passive microwave observations, NASA Special Publication, 459, p. 206. 279 

Figures and tables follow. 280 

 281 



The 2nd International Electronic Conference on Remote Sensing (ECRS 2018), 22 March–5 April 2018;  
Sciforum Electronic Conference Series, Vol. 2, 2018 

7 

 

 282 

Figure. 1: Location map for the regions (marked in different colours) used in PCA overlaid on 283 
SCATSAT-1 backscatter (σ0) data. 284 

 285 

 286 

Figure. 2: Scree plot from the principal component analysis. 287 
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 293 

 294 

Figure. 3: (a) –(c)- First (PC1), Second (PC2) and Third (PC3) Principal Component respectively 295 
generated from six scatterometer parameters; (d)- False colour composite prepared using PC1, PC2 296 
and PC3 as red, green and blue channel respectively, and (e) HSV sharpened imaged of (d). 297 
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  298 

Fig. 4: Antarctic sea ice (white shade) extent from SCATSAT-1. Overlaid (blue contour) on the image 299 
is the sea ice boundary estimated from passive microwave (PMW) data for the same day (3 December, 300 
2016). The SIE obtained from SCATSAT-1 is ~10.7×106 km2 while that from PMW is 10.3×106 km2. 301 
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 302 

Figure. 5: Comparison of sea ice extents for the period December, 2016 to October, 2017 from 303 
SCATSAT-1, Bootstrap and ASI algorithms. A correlation coefficient of 0.99 is obtained in both the 304 
comparisons viz., SCATSAT-1 Vs BT and SCATSAT-1 Vs ASI. 305 
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 308 

(b). 309 

Figure. 6: Pixel-wise mapping accuracy for the comparison between (a) SCATSAT-1 (SC1) and 310 
Bootstrap (BT), and (b) SC1 and ASI sea ice extent estimates. ‘Oc’ represents ocean and ‘Ic’ represents 311 
sea ice. Details are discussed in Section 4. 312 

 313 

Figure. 7: Comparison with Sentinel-1 SAR data. SCATSAT-1 derived sea ice extent (white contour) 314 
is overlaid over SAR imageries. Inset (a) shows the locations of these three imageries. 315 

(a) 

(b) 

(c) 
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 316 

Figure. 8: Comparison of SCATSAT-1 sea ice edge (blue solid contour) with US NIC ice chart. Yellow 317 
regions are the Marginal Ice Zones while red regions are having higher sea ice concentration. 318 

Table 1: Principal Component coefficients for the 6 parameters used in the study. H and V are 319 
horizontal and vertical polarizations; Tb is brightness temperature, Gam is ϒ0 and Sig is σ0. 320 

 321 

Coeff ► 

Parameters▼ 
Coeff 1 Coeff 2 Coeff 3 

Tb_H 0.3623 -0.6015 -0.08589 

Tb_V 0.3668 -0.5857 -0.1571 

Gam_H 0.4379 0.1604 0.5315 

Gam_V 0.4185 0.3493 -0.4514 

Sig_H 0.4380 0.1602 0.5303 

Sig_V 0.4186 0.3490 -0.4476 

 322 

Table 2: F-test statistics for (a) SCATSAT-1 and BT comparison, and (b) SCATSAT-1 and ASI. 323 

(a)  (b)  324 

  325 

BT SC1

Mean 10.51 10.25

Variance 37.33 35.09

Observations 48.00 48.00

df 47.00 47.00

F 1.06

P(F<=f) one-tail 0.42

F Critical one-tail 1.62

ASI SC1

Mean 10.00 10.25

Variance 36.32 35.09

Observations 48.00 48.00

df 47.00 47.00

F 1.03

P(F<=f) one-tail 0.45

F Critical one-tail 1.62
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Table 3: Student's t-test results for (a) SCATSAT-1(SC1) Versus Bootstrap (BT) and (b) SC1 Versus 326 
ASI.  327 

 328 
(a) 329 

 330 
(b) 331 

BT SC1

Mean 10.51 10.25

Variance 37.33 35.09

Observations 48.00 48.00

Pooled Variance 36.21

Hypothesized Mean Difference 0.00

df 94.00

t Stat 0.21

P(T<=t) two-tail 0.83

t Critical two-tail 1.99

ASI SC1

Mean 10.00 10.25

Variance 36.32 35.09

Observations 48.00 48.00

Pooled Variance 35.71

Hypothesized Mean Difference 0.00

df 94.00

t Stat -0.20

P(T<=t) two-tail 0.84

t Critical two-tail 1.99


