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Abstract: High resolution elevation data is a fundamental information for multiple applications in
geomorphology spanning from visual analyses to modeling. Nowadays, gathering of high-quality
elevation data relies on multiple sensors and technologies which can be mounted on terrestrial,
aerial and satellite platforms. In the last years, the Structure from Motion (SfM) algorithms have
made possible the acquisition of high and very-high resolution elevation data from optical images
acquired with high overlapping rates at virtually no cost. Such a feature made it possible to exploit
remote sensing archival imagery to build historical topographic information with unprecedented
detail. However, despite the increasing number of applications of SfM algorithms in the scientific
literature, still little has been done in terms optimization and quality evaluation of the results. We
have applied the SfM algorithm developed in the photogrammetric open source software MicMac
to six black and white aerial photographs taken in 1954 at 1:33.000 in a mountainous and steep area
in Central Italy. The aim of the experiment consists in a quantitative evaluation of the digital surface
models obtained for different scanning settings.
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1. Introduction

Photogrammetry allows the reconstruction of the shape and metric of an investigated object,
starting from measurements of points on photographs. The recent development of photogrammetric
algorithms such as Structure from Motion (SfM) and multi-view-stereo (MVS) algorithms opens an
unprecedented possibility to derive high-resolution Digital Surface Models (DSMs) from archival
images despite the common lack of the calibration certificates [1–4].

Although the number of papers dealing with SfM algorithms in the scientific literature is
increasing, more work still needs to be done to evaluate the quality of the resulting DSMs and to
optimize the digitalization process [1,5]. In this work, we test how photographs digitalization settings
(geometric and radiometric resolution) affect the accuracy of the output DSMs obtained applying the
same photogrammetric processing chain. We processed six archival aerial photographs taken in 1954
at 1:30.000 scale in a mountainous and steep area in Central Italy, which topography represents a
challenge for producing photogrammetric DSMs.

Both proprietary and open source photogrammetric software applications exist, which are used
for work and research [6–8]. Unlike proprietary software, however, open source gives the possibility
to examine [9,10], modify and redistribute the algorithms, and is particularly suitable for research
reproducibility and replicability [11] and closer to the general concept of open science [12]. For this
work, we have adopted MicMac, an open source photogrammetric software that implements SfM
and and MVS algorithms [13].

The 2nd International Electronic Conference on Remote Sensing (ECRS 2018), 22 March???5 April 2018;
Sciforum Electronic Conference Series, Vol. 2, 2018

http://www.mdpi.com


The 2nd International Electronic Conference on Remote Sensing (ECRS 2018), 22 March???5 April 2018;
Sciforum Electronic Conference Series, Vol. 2, 2018

2. Study area

The study area is a 35 km2 wide area in the Northern Apennines, Central Italy. The area shows
the common features of a mountainous region: elevation spans between 610 and 1560 m a.s.l., and the
highest slope reaches 90◦. Furthermore, due to the bedding attitude of the rocks that crop out in the
study area, overhanging sandstone and limestone cliffs are a diffuse feature. The relative relief within
the study area is particularly high. This is due to the presence of five major valleys which converge
in the eastern part of the study area (Figure 1). Landcover is mainly wooded and scarcely built up,
with few and sparse cultivated fields. Above 1.200 m a.s.l., landcover is mainly bare soil or grass.

Figure 1. Study area. (a) Main map. Red triangles indicate the locations of the GCPs; blue lines
indicate the path followed to collect control points in kinematic mode (CPK). (b) Perspective view of
the central portion of the study area.

3. Materials

The area of interest is covered by six black and white 23x23cm aerial photographs (printings of
original negative films), acquired in September 1954 at approximately 1:33.000 scale with a calibrated
focal length of 153.78mm, using a FAIRCHILD camera. The photographs belong to two strips, which
have an overlap of 60% and a sidelap of 40%.

For the computation of the DSMs, we used an Asus G750JX laptop, with a Intel c© CoreTM i7
4700HQ 8-cores processor, 24GB of DDR3 RAM memory and NVIDIA R© GeForce R© GTX 770M GPU
graphic chip-set with 3GB DDR5 dedicated memory.

The digitalization of the aerial photographs was carried out by the Epson expression 10000 XL
scanner. Its maximum geometric resolution is 2.400 dpi at a maximum of 16 bit in gray-scale and 32
bit in color mode.
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The survey to collect ground control points (GCPs) and control points in kinematic mode was
carried out using the GNSS receiver Leica Zeno 20, mounting the external antenna Leica AS10, and it
was used in RTK mode, which allowed for a centimetric accuracy.

The software used at different steps of this work were: (i) SilverFast 6.6, (ii) MicMac [14].

4. Procedure to obtain the photogrammetric DSM

The first step of the procedure consisted in scanning the photographs. Each photograph was
acquired at 400, 800, 1600 and 2400 dpi in gray-scale both at 8 and 16 bit using SilverFast software,
for a total of 8 datasets. Images were then cropped using a rectangle mask, with the sides tangent to
the fiducial marks.

In the second step, the images exif proprieties were edited (MicMac command SetExif ) to provide
information on focal length Fmm and equivalent focal length F35 for the internal calibration. The
focal value was available from the distributor website (photograph example). The 35 mm equivalent
focal length (F35) was computed as follows: F35 = Fmm ∗ W35/W f ilm, where W35 is the film width
(in millimeters) for a 35 mm camera, and W f ilm is the film width of the acquisition camera (in
millimeters). In this case, F35 was equal to 23.86 mm.

The third step consists in the tie points definition (homologous pixels automatically detected
across different images) through an image matching process performed by the MicMac tool Tapioca.

In the next step masks can be created to prevent MicMac from unnecessary computation. The
graphical interface tool used is SaisieMasqQT. Then, tie-points are filtered out by HomolFilterMasq.

The bundle block adjustment (BBA) is performed in the fifth step by the MicMac command Tapas,
an interface to the more complex tool Apero [15].

In the sixth step, GCPs have to be identified and selected on each image by a graphic interface
(tool SaisieAppuisInitQT). The GCP ground absolute coordinates and the user-defined uncertainties
are stored in a .txt file, then converted in a .xml file by the tool GCPConvert.

In the next step, a rigid transformation from the model coordinate system Arbitrary to the
absolute coordinate system GroundInt is performed by the tool GCPBascule. Subsequently, a second
BBA that fits tie points and GCPs is performed by the command Campari which calls the tool Apero.

Lastly, once the sparse point cloud has been generated, MicMac can proceed to the dense
matching by the tool Malt. Finally, the dense point cloud is exported in .ply format by Nuage2Ply.

5. Ground Control Points

To further constrain the model, GCPs were collected by a GNSS survey. When collecting GCPs,
care was taken to avoid cluster effects, and covering as homogeneously as possible the study area,
also in elevation [16]. Particular attention was paid to the portion of the area covered by the black
outlined rectangle in Figure 1. Due to the poorly built up landscape around the only municipality in
the area (Visso) in 1954, and the difficulty in accurately finding the corresponding location of GCPs
in today’s landscape, most of the GCPs was selected at crossroads or on structures (Figure 1). For
each of the 7 GCPs collected, longitude, latitude and elevation above ETM 2008 geoid were acquired
using the available GNSS equipment in RTK mode. Elevation was converted to ITA 2005 geoid, more
accurate for Italy.

To collect CPs for the DSMs validation, a GNSS survey was conducted in the field using the true
kinematic method. The antenna was mounted on a car, and the frequency of acquisition set to 1 point
every 10 meters. The over 1,000 points in the area were collected along two roads approximately
running in the N-S and E-W directions (Figure 1). The points with uncertainties greater than 10 cm
were filtered out, obtaining a robust set of elevation data used as control points (CPK) to validate the
output DSMs.
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6. Results and discussion

Table 1 summarizes the results of the experiment presented. For reference, the first four rows
describe the characteristics of the eight datasets.

When considering the number of tie points generated, no appreciable difference is observed
across color depths. The highest number of tie points were obtained for 800 dpi (both 8 and 16
bit) images. Furthermore, a decreasing trend in BBA error is observed across scanning resolutions.
However, the improvement between the 1600 and 2400 dpi datasets is negligible, both at 8 and 16 bit.

Table 1. Results for the 8 datasets. GSD, Ground Sampling Distance; BBA, Bundle Block Adjustment;
P.E., Projection Error; GCP, Ground Control Point; DSM, Digital Surface Model; H-MAE, Mean
Absolute Error of residuals in elevation; H-RMSE, Root Mean Square Error along elevation. Units
of measure not belongin to the SI: dpi, dots per inch; px, pixels; p/m2, points per square meter; min,
minutes. Dataset names: 800g16 indicates an image scanned at 800 dpi, in gray-scale, and at 16 bit.

Dataset name 400g8 800g8 1600g8 2400g8 400g16 800g16 1600g16 2400g16
Scanned images
Resolution [dpi] 400 800 1600 2400 400 800 1600 2400
Color depth [bit] 8 8 8 8 16 16 16 16
Pixel size [µm] 56 28 14 9 56 28 14 9
Approx. GSD [m] 1.91 0.95 0.48 0.32 1.91 0.95 0.48 0.32
Sparse point cloud
Tie points [thousands] 62.1 79.9 75.4 66.6 62.4 79.7 75.4 66.8
BBA P.E. [px] 0.32 0.459 0.71 0.981 0.319 0.469 0.725 0.981
BBA & GCP, P.E. [px] 0.363 0.512 0.683 0.949 0.362 0.537 0.789 0.948
BBA & GCP, P.E. [m] 0.69 0.49 0.33 0.3 0.69 0.51 0.38 0.3
Dense point cloud
Mean density [p/m2] 0.33 1.33 5.31 11.74 0.33 1.33 5.3 11.77
DSM
DSM Resolution [m] 2 1 0.5 0.35 2 1 0.5 0.35
Computation time
Tapioca [min] 6 21 30 40 6 22 28 40
Malt [min] 23 87 449 1294 19 84 430 1175
Internal coherence
3D MAE [m] 0.27 0.11 0.20 0.27 0.36 0.16 0.23 0.27
3D RMSE [m] 0.50 0.16 0.28 0.40 0.59 0.20 0.40 0.40
Model validation
Mean [m] -0.81 -0.2 -1.08 -0.89 -1.01 -0.21 -1.18 -0.94
Median [m] -0.48 -0.36 -0.92 -0.77 -0.48 -0.36 -0.92 -0.77
Standard dev. [m] 2.51 2.11 1.66 1.79 2.65 1.97 1.7 1.85
H-MAE [m] 1.96 1.66 1.52 1.54 2.06 1.54 1.6 1.58
H-RMSE [m] 2.64 2.11 1.98 2 2.84 1.97 2.07 2.07

Table 1 also reports the running time of Tapioca and Malt, the most demanding (parallelized)
tools of the entire pipeline. The time increase trend is steeper for Malt compared to Tapioca.
Therefore, processing images at high geometric resolutions implies more time expense due to the
dense matching process. On the other hand, it is observed that increasing the radiometric resolution
does not lead to running time increase, neither for Tapioca, nor for Malt.

The distance between the seven GCPs and the location of the same GCPs computed by the
model [13] can be considered as an indicator of its internal coherence. In detail, Table 1 shows
the two indicators MAE and RMSE. Inspection of Table 1 reveals that (i) g8 datasets have residuals
comparable to or slightly smaller than the corresponding g16 datasets, (ii) the 800g8 dataset shows
the lowest residuals, (iii) the minimum values of RMSE and MAE were obtained for 800 dpi (both
for 16 bit and 8 bit scanned images). Unexpectedly, we notice that increasing color depth does not
necessarily correspond to an increased internal coherence. We hypothesize that this can be due to
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the fact that the original images are grey-scale printed photographs. Since previous research indicate
that 16 bit acquisition is advised as a best practice [17], based on our results, further tests should be
carried out to further look into this topic.

The total 8 dense point clouds were projected into DSMs, which resolution was set close to the
GSD of the starting images (Table 1).

To evaluate the accuracy of the eight DSMs, we computed the difference between the elevation of
each CPK and the elevation of each DSM at the planimetric location of each CPK. Outliers were singled
out and filtered according to a three-sigma (3 σ) error criterion. Statistics of residuals distributions is
shown in the last section of Table 1.

Inspection of model validation data (Table 1) shows that 800g8 is the best dataset in terms of
mean value proximity to zero, which can be taken as indicator of small systematic error. Anyway,
as already mentioned above, 1600g8 has the smallest standard deviation, which can be taken as
indicator of good relative accuracy. Moreover, 1600g8 has the smallest root mean squared error
(RMSE), which takes into account both random and systematic error [18]. Finally, 1600g8 has also
the smallest mean absolute error (MAE), which is an even more important quality indicator than
RMSE, according to some authors [19]. To check for normality of the two best distribution candidates
800g8 and 1600g8, we made a one-sample Kolmogorov-Smirnov test. The 800g8 dataset seems better
normally distributed, showing a maximum distance value of 0.20 compared to the 0.30 of the 1600g8
dataset.

Overall, considering the model internal coherence, the mean point density of the point clouds,
and the results of the model validation (Table 1), it emerges that the optimal performance was
obtained at 1600 dpi for images scanned at 8 bit, whereas it was obtained at 800 dpi for images
scanned at 16 bit. When compared to the computation time, it is also clear that a low increase
in the internal model of 2400 dpi (8 and 16 bit) corresponds to a computation time way too large
compared to the 1600 dpi datasets. Such an evidence underlines that acquisition at 2400 dpi appears
inconvenient, even for high-performance machines. Moreover, Table 1 shows that the number of
tie points automatically detected by Tapioca decreases with the increasing scanning resolution higher
than 800 dpi.

7. Conclusions

This work quantified the influence of acquisition of archive aerial images on the accuracy
of DSMs produced applying photogrammetric algorithms, and hence can help to define the best
acquisition mode to get the most from archival aerial photographs.

Limitedly to the historical aerial photographs used in this study (available for the entire Italian
territory), results revealed that the optimal scanning geometrical resolution is between 800 and 1600
dpi, and that the radiometric resolution does neither affect computation time nor provide any quality
improvement of the final DSMs.

The photographs used in this experiment belong to an extensive aerial photographic survey
conducted between 1954 and 1956 over all the Italian territory. Based on this study, such large
set of historical aerial photographs can be exploited to produce DSMs at a resolution between 0.5
and 1 m with errors close to 2 m in elevation. Such an invaluable dataset could provide accurate
high-resolution quantitative information on topography, which is of great value for multiple studies
in Earth Science.

Author Contributions: S.S. performed the analysis and field surveys, I.M and M.S. conceived and designed the
experiments, wrote the paper and analyzed the data; M.C. and A.C.M. contributed materials and revised the
manuscript
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