

1 Conference Proceedings Paper

2 Automated Measurement of Plant Height of Wheat

- **3 Genotypes Using A DSM Derived From UAV**
- 4 Imagery
- 5 Nusret Demir ^{1,*}, Namık Kemal Sönmez ¹, Taner Akar ³ and Semih Ünal ²
- Akdeniz University, Faculty of Science, Dept. of Space Science and Technologies, Antalya, Turkey, nusretdemir@akdeniz.edu.tr
 Akdeniz University, Institute of Science and Technology, Dept. of Remote Sensing and GIS, Antalya
 - ² Akdeniz University, Institute of Science and Technology, Dept. of Remote Sensing and GIS, Antalya, Turkey; nksonmez@akdeniz.edu.tr
- Akdeniz University, Faculty of Agriculture, Dept. of Field Crops, Antalya, Turkey;
 tanerakar@akdeniz.edu.tr
- 12 * Correspondence: nusretdemir@akdeniz.edu.tr; Tel.: +90-242-3102235
- 13 Published: date

9

14 Abstract: In this study, we have evaluated the use of UAV photogrammetry for monitoring of a 15 wheat experiment under field condition, filtered DSM to derive the wheat plant heights, and 16 compare the results with the field measurements. The images were acquired with use of low cost 17 UAV Walkera QR350 and GoProHero3+ action camera in May 2015. Totally 477 images were 18 acquired for quality assessment of the proposed method and a reference dataset was collected with 19 terrestrial fieldwork. For comparison of field measurements with DSM-derived plant heights, the 20 maximum calculated plant height in the plot was selected. The mean, median, and standard 21 deviation were calculated as 4.66 cm, 3.75 cm., 13.78 cm. Regarding statistical t-test between the field 22 measurements and plant heights from DSM, t-value was calculated as 1,82 and p-value was 0,071. 23 Since t-value is larger than 0.50, the values between traditional method and our approach are highly 24 correlated considering the fact that p-value confirms this result.

- 25 Keywords: UAV; DEM; precision agriculture; wheat experiment; plant height
- 26

27 **1. Introduction**

Turkey is a country with a good climate and ecological properties for agricultural production, and the agriculture occupies 24.6% workforce of the whole country[1]. Wheat production is important for Turkish economy and Turkey produced 17 million tons of wheat in 2016.

Traditionally, the monitoring of the wheat height is performed with field works under experiment conditions. The breeders and agronomists measure the height of the wheat genotypes with random selection in predefined interval distances. But it is time consuming and not accurate since it is not possible to measure all wheat genotypes tested in the field experiments. Thus, automated and accurate methods are needed.

High resolution imagery allows producing an accurate 3D model of any object including
agricultural field experiments. UAV technology gives an opportunity to acquire imagery from above
and then photogrammetric workflow can produce high resolution orthoimage and also a 3D model.
UAV technology also allows repeating the process in predefined dates to monitor the growth of plant
height of wheat genotypes periodically.

For monitoring of the wheat growth, the height of wheat is one of the important parameters. The
monitoring of the height changes among different times will allow agronomist and breeders to
determine the health and growth of the wheat experiments.

In the literature, crop surface models are created and used for measuring of the crop heights [2– 4]. Bendig et al [3] created crop surface models of barleys with cm resolution, and they calculated a mean value for each harvest parcels to estimate the crop heights. They applied photogrammetric method with use of Agisoft Photoscan software package. Laser scanning data also were used with Tilly et al [4], they created crop surface models from the laser derived point clouds. Similarly to Bendig [3], Possoch et al [5] also generated CSM with using UAV-based crop surface model, and they used mean values of the subtracted surface model from DTM.

In agriculture, UAVs are also used for LAI and NDVI analysis to monitor the health of the crops,
 but without considering the height of the vegetation [6–8].

53 There are some researches regarding the tree height estimation. Considering the use of UAVs in 54 forest inventory studies, Fritz et al. [9] detected the individual trees in an open area. They processed 55 more than 1000 images which acquired at 55 m flying height. The used camera was a Panasonic G3 56 with 14-42 mm focal heights and 16.6-megapixel resolution. The image acquisition was performed in 57 April before the leaf emergence. They generated orthoimages and point clouds, and compared them 58 with ones generated with a terrestrial laser scanner. For processing of imagery, they used CMVS and 59 PMVS-2 software packages to process data. The processing schema consisted of 6 steps, viz. data 60 cleaning, SIFT feature extraction, image matching, classification, point cloud generation, including 61 camera parameters for 3D modeling of the vegetation surface. They detected 73 trees. Their study 62 compared laser-based and image-based point clouds and confirmed that the results from image data 63 were superior to those from the laser scanner. Feng et al. [10] classified UAV-based images to detect 64 urban vegetation.

In this study, we evaluated the use of UAV photogrammetry for monitoring of the wheat field experiments and compared the results with the field measurements.

67 2. Experiments

The study area is located in Dosemealti agriculture area near Antalya province. This region has a lot of wheat cultivation sites and also industrial organizations for the process of the agricultural products. Figure 1 shows the study area which contains 192 cultivation parcels in the wheat

71 experiments where 52 of them were investigated.

72 73

Figure 1. Experimental area.

The process starts with image acquisition with a low cost UAV. The UAV was very simple, operated in a manual mode in high windy conditions. Therefore, the flying height varied during the acquisition.

The images are pre-processed due to noise elimination and enhancement. Then, commercial software package, Agisoft Photoscan was used to create high resolution orthoimage and digital surface model. For measurement of the wheat plant heights, the digital surface model was filtered to derive the terrain model. Then, the terrain model was sub-structured from the surface model. Later on, for determination of the wheat plant heights for each parcel, the maximum elevation was picked as the wheat plant height for evaluation. The results were evaluated with use of reference dataset

83 which was created with field measurements.

84 2.1. Image acquisition

The images were acquired with use of low cost UAV Walkere QR350 and GoProHero3+ action camera on December 7th, 2015. Totally, 477 images were taken but 55 of them were selected for the

87 process.

88

89

Figure 2. Used UAV (left) and GoPro camera (right).

90 The reference dataset was collected with terrestrial fieldwork. A special circle with 1.5m 91 diameter was placed above the harvest parcel and the average wheat plant height in the experimental 92 area which intersects with the circle was reported as wheat plant height for the selected parcel.

93 2.2. Image preprocessing

94 The acquired images are high resolution and very useful for generating accurate surface models.
95 But images contained noise and they were needed to be eliminated. The images contained noise
96 because of various reasons e.g. atmospheric effects, and the sensor itself.

97 Pre-processing contains three steps; estimating the noise, noise reduction [11] Wallis filtering
98 [12] forces the mean and the standard deviation of the image to fit given values. An adaptive edge
99 preserving smoothing filter [11] is used for reduction of the noise. This filter preserves edge features
100 like one-pixel line, corners, and line points.

101 2.3. Generation of surface model and orthoimage

Image orientation is a must to perform image do matching and 3D reconstruction from the preprocessed dataset. The exterior orientation was performed with automatic tie-point extraction using bundle adjustment and ground control points (measured on Google Earth imagery). Images are processed and the point cloud and orthoimage were created with the use of using Agisoft Photoscan software. The elevation of the ground control points is interpolated from ASTER based 30 m resolution digital elevation model.

108 For calculation of wheat plant heights, terrain model has to be generated. Reduction of the 109 generated digital surface model allows producing the terrain model. For this purpose, a progressive 110 morphological filter method [13] is applied. The method starts with morphological opening 111 operation on the surface model to generate a secondary surface. The elevation difference between the 112 cells is compared with previous and the current ones during the iteration. If the difference reaches a 113 defined threshold, the cell is classified as a non-ground object. The used threshold is calculated with 114 a predefined slope value (s). The window size of filtering kernel (dhT,K) has been increased, and the 115 derived surface has been used as an input for the next operation. This is defined by Zhang et al. [13]

$$d_{h_{T,k}} = \begin{cases} dh_{max} & \text{if } d_{h_{T,k}} > dh_{max} \\ s(w_k - w_{k-1})c + d_{h_0} & \text{else if } w_k > 3 \\ dh_0 & \text{else if } w_k \le 3 \end{cases}$$
(1)

116 Where is the $d_{h_{T,k}}$ height difference threshold, d_{h_0} is the initial elevation difference threshold 117 which approximates the error of DSM measurements, dh_{max} is the maximum elevation difference 118 threshold (m), c is the grid size (m), s is the estimated terrain slope and w_k is the filtering window 119 size (in number of cells) at th iteration.

120 3. Results and Discussion

- 121 Substruction of terrain model from the surface model gives the normalized surface model, which
- 122 will be used for calculation of the wheat plant heights in harvest parcels. The height map of the wheat
- 123 plants in the experiment is shown in Figure 3.

For each parcel, the maximum, minimum and average height values are calculated. Since the generated surface model is produced with the photogrammetrical method, the gaps between the wheat parcels are also present and these gaps affect the statistical values negatively. Therefore, only maximum height values are chosen for calculation of the wheat plant heights.

131

Wheat heights | Pi =max(nDSM) Pi ,i[1,2,3...n]

For n parcels, the wheat height for the parcel n is determined as a maximum elevation in the parcel n. There is a high correlation between the height values derived from field measurements and the calculated values from the proposed method. The calculated statistics mean, median and standard deviation values are listed in Table 1.

136**Table 1.** Statistics of the difference between field measurements and the calculated plant137heights(cm)

	8 、 /	
Mean	Median	Std.Dev.
4.66	3.75	13.78

138

The mean, median, standard deviation is calculated as 4.66 cm, 3.75 cm., 13.78 cm. Regarding statistical t-test between the field measurements and plant heights from DSM, t-value is calculated as 1,82 and p-value are 0,071. Since t-value is larger than 0.50, the values between traditional method and our approach are highly correlated considering the fact that p-value confirms this result. In a previous work [14] barley heights are measured as 72.6 cm with 15.2 cm standard deviation with use of traditional methods.

145 5. Conclusions

In this work, it is concluded that UAV imagery is effective to measure the wheat length as an alternative method for the ground measurements. The filtering method has direct influence in the final results. Any improvement in the filtering of surface model will allow an increase in the quality of the results. As a future work, laser scanning can be applied to compare its performance to measure

150 the wheat length.

151 Author Contributions: Nusret Demir developed the idea and wrote the paper, Semih Unal run and 152 complied the experiments, Namık Kemal Sönmez contributed in processing of aerial imagery for 153 crop height purpose and developed the statistical methods, Taner Akar planned and conducted the

154 field works and contributed in the statistical analyze.

155 Abbreviations

- 156 DSM:Digital Surface Model
- 157 nDSM:Normalized digital surface model
- 158 UAV:Unmanned Air Vehicle

159 References

160 1. T.C. Maliye Bakanlığı, Yıllık Ekonomik Rapor 2016 (in Turkish); 2017

- Bendig, Juliane; Bolten, Andreas; Bareth, G. UAV-based Imaging for Multi-Temporal, very high
 Resolution Crop Surface Models to monitor Crop Growth VariabilityMonitoring des
 Pflanzenwachstums mit Hilfe multitemporaler und hoch auflösender Oberflächenmodelle von
 Getreidebeständen auf Basis von Bildern. *Photogramm. Fernerkundung Geoinf.* 2013, 2013.
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M. L.; Bareth, G. Combining
 UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for
 biomass monitoring in barley. *Int. J. Appl. Earth Obs. Geoinf.* 2015, 39, 79–87,
 doi:https://doi.org/10.1016/j.jag.2015.02.012.
- Tilly, N.; Hoffmeister, D.; Cao, Q.; Huang, S.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Multitemporal
 crop surface models: accurate plant height measurement and biomass estimation with terrestrial laser
 scanning in paddy rice. 2014, *8*, 83623–83671.
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-Temporal Crop
 Surface Models Combined with the RGB Vegetation Index from Uav-Based Images for Forage
 Monitoring in Grassland. *ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.* 2016, XLI, 991–998.
- 175 6. Lelong, C. C.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of Unmanned Aerial
 176 Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. *Sensors* 2008, 8.
- 177 7. Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A.; Nishiwaki, K.; Murakami, N.; Shibuya, Y.; Hirafuji, M.; Nuske, 178 S. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from 179 unmanned an aerial vehicle. Biosyst. Eng. 2016, 148, 1 - 10,180 doi:https://doi.org/10.1016/j.biosystemseng.2016.04.010.
- Herwitz, S. R.; Johnson, L. F.; Dunagan, S. E.; Higgins, R. G.; Sullivan, D. V; Zheng, J.; Lobitz, B. M.;
 Leung, J. G.; Gallmeyer, B. A.; Aoyagi, M.; Slye, R. E.; Brass, J. A. Imaging from an unmanned aerial
 vehicle: agricultural surveillance and decision support. *Comput. Electron. Agric.* 2004, 44, 49–61,
 doi:https://doi.org/10.1016/j.compag.2004.02.006.
- Fritz, A.; Kattenborn, T.; Koch, B. Uav-Based Photogrammetric Point Clouds Tree Stem Mapping In
 Open Stands In Comparison To Terrestrial Laser Scanner Point Clouds. *ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.* 2013, *XL-1/W2*, 141–146, doi:10.5194/isprsarchives-XL-1-W2-141-2013.
- 188 10. Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest
 189 and Texture Analysis. *Remote Sens.* 2015, 7.

190 11. Pateraki, M. N. Adaptive multi-image matching for DSM generation from airborne linear array CCD data;
191 Gruen, P. D. A., Ed.; ETH Zurich: Zurich, 2005;

192 12. Wallis, H. An approach for the space variant restoration and enhancement of images. In *Symposium on* 193 *Current Mathematical Problems in Image Science*; 1976.

- 194 13. Zhang, K.; Chen, S. C.; Whitman, D.; Shyu, M. L.; Yan, J.; Zhang, C. A progressive morphological filter
 195 for removing nonground measurements from airborne LIDAR data. *IEEE Trans. Geosci. Remote Sens.*196 2003, 41, 872–882, doi:10.1109/TGRS.2003.810682.
- 19714.Karagöz, A.; Özbek, K.; Akar, T.; Ergün, N.; Aydoğan, S.; İsmail; Sayım Agro-Morphological Variation198Among an Ancient World Barley Collection. J. Agric. Sci. 2017, 23, 444–452.

199

200

CC

ΒY

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (†) (http://creativecommons.org/licenses/by/4.0/).