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Abstract: Arable soils are subjected to the altering influence of agricultural and natural processes 12 

determining surface feedback patterns therefore affecting their ability to reflect light. However 13 
remote soil mapping and monitoring usually ignore information on surface state at the time of data 14 
acquisition. Conducted research demonstrates the contribution of surface feedback dynamics to soil 15 
reflectance and its relationship with soil properties. Analysis of variance showed that the 16 
destruction surface patterns accounts for 71 % of spectral variation. The effect of surface smoothing 17 
on the relationships between soil reflectance and its properties varies. In case of organic matter and 18 
medium and coarse sand particles correlation decreases with the removement of surface structure. 19 
For particles of fine sand and coarse silt, grinding changes spectral areas of high correlation. Partial 20 
least squares regression models also demonstrated variations in complexity, R2cv and RMSEPcv. 21 
Field dynamics of surface feedback patterns of arable soils causes 22-46 % of soil spectral variations 22 
depending on the growing season and soil type. The directions and areas of spectral changes seem 23 
to be soil-specific. Therefore, surface feedback patterns should be considered when modelling soil 24 
properties on the basis of optical remote sensing data to ensure reliable and reproducible results. 25 
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 27 

1. Introduction 28 

Soil spectral reflectance in optical domain has been under study for quite a long time. It was 29 
founded to be affected by many factors such as moisture content, surface condition, granulometric 30 
composition, total iron content, organic matter content, content of readily-soluble salts, carbonate 31 
content and mineralogical composition [1-8]. The relationships between soil spectral reflectance and 32 
its properties allow to estimate soil characteristics from remotely-sensed data. 33 

To facilitate the development of soil mapping algorithms, spectral libraries of soils and rocks 34 
have been created [9-14]. However, the problem arises when linking spectral data measured in 35 
laboratory and in the field as surface state interferes affecting the accuracy of the acquired 36 
relationships [15-19].  37 

In the experiment with rainfall simulation and wind tunnel abrasion it was proved that changes 38 
in open soil surface state significantly influence the variation in the reflectance of all wavebands[20]. 39 

To describe the way land surface transforms when drying after rainfall which can be captured 40 
by remote sensors as changes in spectral reflectance [21]  introduced the term of land surface 41 
feedback dynamic patterns. When studying open soil surface at a local level (where rainfall is 42 
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uniform), feedback dynamic pattern is mainly dependent on soil conditions. The incorporation of 43 
surface feedback patterns estimated from remote sensing data was shown to increase the accuracy of 44 
digital soil texture mapping over low-relief areas [22]. 45 

As arable soils experience the influence of both agricultural and natural processes, resulting in 46 
the formation of various surface structure elements (clods, crust, cracks, grains), surface dynamic 47 
feedback patterns will be determined by the spatial arrangement of formed surface elements and the 48 
degree of their development. 49 

Despite the recognition that surface state should be estimated when using remote sensing data 50 
for digital soil mapping as from one side it affects soil spectral reflectance [23] and from the other 51 
side can be additional source of information allowing to increase the accuracy of models for mapping 52 
of soil characteristics from remote sensing data [22], there is still a lack of studies on that topic . 53 

Therefore the aim of our research is to show how surface feedback patterns influence soil 54 
reflectance and its relationships with soil properties. 55 

2. Experiments  56 

The study area is comprised of four test plots. The first test plot (3 arable fields) is located in 57 
north-eastern part of Saratov oblast in Russia. This territory is characterized by a moderately dry and 58 
moderately warm climate. The mean annual precipitation sum is 385 mm with a maximum (255–270 59 
mm) in the warm season (April–October). 60 

The soil cover is rather inhomogeneous there due to complex geological structure and shallow 61 
cover of quaternary deposits. Haplic  and Calcic Chernozems formed on clay loam and clay are 62 
dominant. They accompanied by Mollic Solonetz on clay and clay loams, Haplic Chernozems on 63 
eluvium of gaizes, Calcic Chernozems on sands and sandy loams, Haplic and Calcic Chernozems on 64 
eluvium of sandstone, parent material exposure. 65 

Second, third and fourth test plots (36 arable fields) are located in western, south-western and 66 
northern parts of Tulskaya oblast in Odoevskiy, Plavskiy and Yasnogorskiy regions correspondingly. 67 
The region has a moderate continental climate. Annual precipitation is 470 mm in southeast and 575 68 
mm in northwest. 69 

Soils of these test plots are represented by Albic Luvisols (Odoevskiy, Yasnogorskiy) and Luvic 70 
Greyic Phaeozems (Odoevskiy) formed on heavy clay loams, Grey-Luvic Phaeozems and Luvic 71 
Chernozems (Plavskiy) formed on calciferous loess loams. 72 

The spectral reflectance was measured in the field in a sunny weather with spectroradiometer 73 
HandHeld 2  working in optical domain (the range of wavelengths from 325 to 1075 nm). The 74 
accuracy of measurements is ±1 nm. During the scanning, the apparatus was held perpendicular to 75 
the surface. Spectral reflectance at each point was measured 5-10 times and then averaged. Acquired 76 
spectra were also resampled at 10-nm intervals. Due to poor signal-to-noise ratio parts of spectrum 77 
before 350 and after 900 nm were removed from the analysis.  78 

The research consisted of 2 main stages. At the first stage we assessed the effect of destroying 79 
surface feedback patterns (also referred further in the text as SFP) formed in the field what it is usually 80 
done when measuring spectral reflectance in laboratory. And we also estimated the possible 81 
transformations of relationships between the properties of upper soil horizon and its spectral 82 
reflectance resulting from the removement of surface patterns. 83 

For that 50 samples were taken from the upper layer (0-5 cm depth) at the 1st test plot and 84 
scanned in dry intact (with original surface patterns) and ground (1-mm sieve) state. They were also 85 
analysed in laboratory for organic matter content [24] and texture [25].  86 

The next stage was to find out what happens in the field with spectral reflectance when surface 87 
feedback patterns change in time during the growing season.  88 

This part of the research was performed on the fields of 2nd, 3 rd and 4th test plots. Spectral data 89 
there was measured 8 times from April to November during 2 years (2014, 2015). Scanning was 90 
carried out on areas representing typical soils for the plots (3-5 points per a field). Generally 903 91 
spectral curves were collected. 92 
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In our previous studies on soil spectral reflectance in optical domain it was founded that along 93 
spectral curves there are sections where they change the direction due to variations in soil properties 94 
contributing to soil reflectance [26-28]. Such indicative parameters were determined for studied soils 95 
and further used to assess the influence SFP have on soil reflectance. More information on the 96 
parameters and the way of their calculation can be found in [26, 28]. 97 

As the main part of remote sensing data used in digital soil mapping are multispectral, we 98 
recalculated obtained indicative parameters in relation to the width of spectral bands of satellite 99 
systems. In particular, we used Landsat TM-5 spectral bands. It was done to understand how changes 100 
in SFP affect soil reflectance when working with data of lower spectral resolution. 101 

Correlation analysis, analysis of variance (ANOVA) and partial least squares regression (PLSR) 102 
were used to determine the way the destruction of SFP affects the relationships between reflectance 103 
parameters and soil properties. The effect of surface feedback pattern dynamics on soil reflectance 104 
was also estimated with ANOVA.  105 

ANOVA was performed in the R environment with car package. The size of effect was measured 106 
with eta-squared (heplots package). PLSR modelling was done with pls package. Optimal number of 107 
components was determined using graphs of the cross validated (leave-one out method) root mean 108 
squared error of prediction (RMSEPcv). Coefficient of determination calculated with caret package 109 
was used to assess the prediction ability of the PLSR models. 110 

3. Results and discussion 111 

3.1. The effect of destroying SFP on spectral reflectance of upper soil horizon 112 

General analysis of spectral reflectance of dry intact and ground samples showed that 113 
removement of surface patterns results in smoothing of spectral curves and causes increase in 114 
reflectance values.  115 

As to indicative spectral parameters, according to analysis of variance the destruction of SFP 116 
determines 71 % of their variation (Pillai’s trace=0.71, F=2.37, p=0.03, eta squared=0.71). The most 117 
pronounsed changes are observed for such parameters as st1, st2, st3 and st4, calculated as the ratios 118 
of reflectance value in certain band1 to its spectral width (Figure 1, B). 119 

 120 

Figure 1 – Variations in indicative spectral parameters due to the destruction of soil SFP: A – 121 
parameters calculated as ratios of spectral reflectances of two corresponding bands (lt12, lt13, lt14, 122 
lt23, lt 24, lt34) and as average reflectance for the band (lt1, lt2, lt3, lt4); B – parameters calculated as 123 
ratios of band reflectance to the its spectral width (st1, st2, st3, st4) and as the ratio of ditterence 124 

                                                 
1 Reflectance value for each considered band (here and further in the text) was obtained by recalculating from spectral data 
required with field spectroradiometer in relation to spectral bands of multispectral satellite systems (Landsat TM-5) 
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between reflectances in two bands to the difference between maximum and minimum wavelength of 125 
the corresponding bands (st12, st13, st24, st14, st34). Surface: 0 – dry intact, 1 – dry ground. 126 

Besides, the destruction of SFP results in decrease of the correlation between organic matter, 127 
particles of coarse and medium sand fraction and spectral reflectance parameters (Table 1). In case of 128 
fine sand and coarse silt fractions the parameters with significantly high correlations are changed. 129 

Table 1. Correlation coefficients between spectral reflectance and soil properties for intact (above the 130 
slash) and ground samples (under the slash). (Significant coefficients are written in semi-bold type). 131 

Parameter1 

Properties 

Organic matter 
Coarse and medium  

sand particles 
Fine sand particles Coarse silt particles 

lt1 0.61/0.02 -0.27/0.03 -0.56/-0.5 0.48/0.58 

lt3 0.44/0.05 -0.21/0.01 -0.61/-0.37 0.56/0.39 

st1 0.59/0.05 -0.32/0.02 -0.55/-0.52 0.47/0.6 

st13 0.26/-0.03 0.09/0.02 -0.7/-0.1 0.64/0.07 

st3 0.49/0.05 -0.19/0.01 -0.64/-0.37 0.57/0.39 

lt12 0.14/0.21 -0.61/-0.18 0.46/-0.43 -0.3/0.58 

lt23 -0.32/-0.21 0.52/-0.14 -0.31/0.77 0.33/-0.8 

lt13 0.27/0.19 -0.68/-0.06 0.46/-0.59 -0.38/0.72 

lt14 0.09/0.09 -0.51/0.01 0.4/-0.64 -0.27/0.74 

lt24 -0.06/0.03 -0.36/0.12 0.42/-0.64 -0.35/0.67 

1 Only parameters having at least one significant correlation coefficients are shown 132 

Partial least squares regression also showed that the effect of destroying of SFP varies with the 133 
properties. For organic matter, the complexity of model and R2 increase when SFP are destroyed 134 
(from 3 to 5 components and from 0.42 to 0.70 correspondingly). Prediction error changes very little 135 
(from 2.6 to 2.57). The number of model components for sampels with removed SFP is also greater in 136 
case of coarse and medium sand particles (6 against 4), R2 alters slightly (from 0.70 to 0.68). But the 137 
RMSEPcv increases (from 8.1 to 10.39). 138 

Model complexity doesn’t change for fine sand and coarse silt particles, RMSEPcv also alters 139 
very little (from 19.5 to 19.15 and from 7.88 to 8.17 correspondingly). Determination coefficient 140 
decreases for the former (from 0.50 to 0.58) and increases for the latter (from 0.49 to 0.63).  141 

Therefore, the removement of soil SFP may not only affect the accuracy of developed models 142 
used in digital soil mapping but the relationships between soil reflectance and the properties itself.  143 

Thus in order to apply the dependencies between soil characteristics and its spectral features for 144 
soil mapping and monitoring, spectral data should be acquired in the field and the registration of 145 
surface state should be done at the time of data acquisition.  146 

3.2. The influence of the dynamics of SFP on spectral reflectance of upper soil horizon 147 

The field observations of the bare soil surface on test plots revealed significant dynamics of its 148 
surface state caused by the influence of snow melting in spring and rainfalls in spring-autumn period. 149 
Formed surface feedback patterns determine reflectance of upper soil horizon.  150 

Analasing two-year data, we found that indicative spectral parameters vary with the time of 151 
spectral data acquisition (Figure 2). The character of changes and their magnitude are soil-specific as 152 
they differ with the test plots. The greatest variations are observed for st3 parameter. 153 

The effect of tillage on surface reflectance was also found to be specific as it affected few 154 
indicative parameters (Figure 3). The biggest difference between reflectance of tilled and non-tilled 155 
surface is registered for such parametetrs as st1, st2, st3 and st4 on the 2nd and 4th test plots, and for 156 
lt13 and st1 parameters on the 3rd test plot. 157 
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 159 

Figure 2 - Variations in mean values of spectral indicative parameters due to seasonality (with error 160 
bars): A, C – 2nd test plot; B, D -3rd test plot. Date corresponds to the times of spectral data acquisition. 161 

 162 

Figure 3 – Variations in mean values of indicative parameters due to tillage interference (with error 163 
bars): 0 – non-tilled surface with SFP, 1 – tilled surface; A, B– results for the 2nd test plot; C, D, - results 164 
for the 3rd test plot; E, F - results for the 4th test plot. 165 

Further analysis of variance proved that both the seasonality and tillage significantly affect soil 166 
reflectance properties (Table 2). The influence of tillage is generally higher. Moreover, SFP formed 167 
due to natural factors add up to the contribution of seasonality to reflectance variations. This effect 168 
also differs with the growing season. 169 

Table 2. Multivariate analysis of surface dynamics influence on soil spectral reflectance. 170 

Parameter Seasonality 
Seasonality/ tillage Seasonality/ year 

Tillage 
non-tilled tilled 2014 2015 

2nd test plot 

Pillai's trace 1.24 1.54 0.90 0.53 1.05 0.28 

F 6.01 6.26 2.48 3.24 5.17 7.83 

p-value 0.00 0.00 0.00 0.00 0.00 0.00 

eta squared 0.25 0.38 0.22 0.27 0.35 0.28 

3rd test plot 

Pillai's trace 1.30 0.91 1.16 1.16 0.91 0.50 

F 12.22 23.41 7.06 7.06 23.41 45.23 
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p-value 0.00 0.00 0.00 0.00 0.00 0.00 

eta squared 0.22 0.46 0.29 0.29 0.46 0.50 

 171 
Thus as the dynamics of SFP accounts for more than 20 % of spectral variations in optical domain 172 

it will affect the stability and reproducibility of models which include information on the 173 
relationships between soil reflectance and its properties and are used as the basis of soil digital 174 
mapping and monitoring with optical remote sensing data. 175 

4. Conclusions  176 

The state of open soil surface is an important factor that should be considered when using optical 177 
spectral data for digital soil mapping as the destruction of formed surface feedback patterns alters 178 
soil reflectance causing 71 % of spectral variations and modifies its relationships with soil properties.  179 

The dynamics of surface patterns of arable soils due to natural and agricultural processes 180 
accounts for 22-50 % of variations of indicative spectral parameters. The effect is greater on non-tilled 181 
soils with surface structure formed by natural processes and differs with soil type. 182 

Therefore, ignoring state of open surface at the time of optical spectral data acquisition does not 183 
guarantee the reliability, stability and accuracy of estimated relationships between soil properties and 184 
its reflectance.  185 
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